
Since the completion of the sequencing of the human
genome, the main goals of functional genomics have
been to determine the function of the products of newly
identified genes, as well as to determine those that might
be therapeutically targeted. So far, functional genomic
strategies have largely centred on gene-expression stud-
ies (transcriptomics) or protein profiles (proteomics)1–3.
These approaches have led to several successes in the
field of cancer biology, such as the identification of new
tumour subtypes, as well as transcriptional and protein
biomarkers for certain types of cancer4–8. Metabolic
activity can also be quantified, as various analytical tools
have been developed to measure concentrations of
low-molecular-weight metabolites (FIG. 1). This is a par-
ticularly challenging task as low-molecular-weight
metabolites represent a diverse range of chemicals.
Perhaps the best description of this approach was
offered by Steve Oliver of Manchester University, who
used the term ‘metabolomics’ to describe “the complete
set of metabolites/low-molecular-weight intermediates,
which are context dependent, varying according to the
physiology, developmental or pathological state of the
cell, tissue, organ or organism”9. This definition arose
from the term that was originally used to describe a
powerful tool for phenotyping yeast mutants9.

Although ‘-omic’ technologies are complementary,
analysis of the metabolome is an especially useful
approach for identifying pathways that are perturbed in a
given pathology, when compared with the transcriptome
and proteome. Measuring metabolite concentrations is a

more sensitive approach than following the rates of
chemical reactions directly. Metabolic control analysis has
demonstrated that although changes in enzyme concen-
trations and activities (‘the proteome’) have a small
impact on metabolic fluxes (the rate of which material
passes through a given metabolic pathway), changes in
flux have a significant impact on metabolite concentra-
tions10–12. This is because the control of the metabolic flux
of a pathway is spread across all the enzymes present 
in the pathway, rather than being controlled by a rate-
determining step. Furthermore, there is not necessarily a
good quantitative relation between mRNA concentra-
tions and enzyme function, but as metabolites are down-
stream of both transcription and translation, they are
potentially a better indicator of enzyme activity13. So,
metabolomics offers a particularly sensitive method to
monitor changes in a biological system, through observed
changes in the metabolic network.

Metabolomic strategies present several practical
advantages, including being relatively cheap on a per-
sample basis, high throughput and fully automated.
For example, after the initial purchase of a nuclear
magnetic resonance (NMR) spectrometer or mass
spectrometer, (MS) samples can be analysed for a
cost of about US $1 apiece, with analytical acquisi-
tion times typically taking 10 minutes (NMR) to 30
minutes (MS-based approaches). This compares very
favourably with transcriptional and proteomic
approaches. Furthermore, the metabolome of one
species can easily be compared with another. Whereas
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in cancer cells during events such as apoptosis19–21.
Metabolomics differs, however, in that rather than
analysing a single class of compounds, it involves an
attempt to measure all the metabolites that are present
within a cell simultaneously. However, because of
immense technical challenges, many studies still have a
long way to go towards this ideal. Using NMR-based
approaches, 20–40 metabolites can typically be
detected in tissue extracts, and 100–200 can be
detected in urine samples. Using the more sensitive
approach of GC–MS, around 1,000 metabolites can be
detected in these samples types (BOX 1). Various other
analytical tools have also been used for metabolomics
— these are listed in TABLE 1. Multivariate pattern-
recognition techniques are then used to distinguish
normal metabolic variations from those patterns
induced by a disease process, a genetic manipulation
or a drug intervention (BOX 2). Furthermore, as multi-
variate analyses are ‘black-box’ approaches, often it is
not necessary to identify all the metabolites detected to
classify a sample.

Such approaches have found applications in phe-
notyping mutant and transgenic yeast, plants and
mice22–25, as well as assessing drug efficacy and
safety26,27. Part of the success of metabolomics as a tool
in toxicology is the ability to readily identify temporal
changes in a cellular or organism’s phenotype, making
the approach ideal for following rapidly changing phe-
notypes. The use of metabolic profiling to follow sys-
temic changes in multicellular organisms has led
Jeremy Nicholson to coin the word ‘metabonomics’. He
defines metabonomics as “the quantitative measure-
ment of the multivariate metabolic responses of multi-
cellular systems to pathophysiological stimuli or
genetic modification”27. In addition to the terms
‘metabolomics’ and ‘metabonomics’, researchers have
felt it necessary to distinguish the types of analytical
techniques used in these approaches28. ‘Metabolic pro-
filing’ has been proposed as a means of measuring the
total complement of individual metabolites in a given
biological sample, whereas ‘metabolic fingerprinting’
refers to measuring a subclass of metabolites to create a
‘bar code’ of metabolism23,24. In this approach, only a
limited number of metabolites are quantified and used
to distinguish between different samples, such as those
of different disease or physiological states. However,
there is significant overlap in the definitions and uses
of these terms, and throughout this review the term
‘metabolomics’ will be used for all approaches in
which an analytical tool is used in conjunction with
pattern-recognition approaches to follow metabolic
changes in a biofluid, tissue or organism.

Despite the successful use of metabolomics to investi-
gate phenotypes of transgenic animals and plants, and its
use in the pharmaceutical industry, most functional
genomic studies of cancer have focused on transcrip-
tomics and proteomics. However, metabolomics can be
used to monitor tumour growth and regression, and can
therefore increase our understanding of pathogenic
mechanisms as well as improve monitoring of treatment
regimens. It has already been used to analyse the function

gene and protein sequences vary between species,
many metabolites are conserved between species, and
the analytical tools used to detect these in one organ-
ism can be applied to another without the need for
recalibration.

Understanding disease processes through meta-
bolic profiling is not a new concept — 31P, 1H and 13C
NMR spectroscopy, along with gas chromatogra-
phy–mass spectrometry (GC–MS), have been widely
used as metabolic profiling tools since the early
1970s14–16 (BOX 1). NMR spectroscopy has also been
used to differentiate between different cancer cell
lines17,18 and to monitor metabolic processes that occur

Summary

• Metabolomics is the study of the complete metabolic compliment of the cell, organ or
organism.

• The technique involves the combined use of multivariate statistics and an analytical
technique such as nuclear magnetic resonance spectroscopy, gas chromatography–mass
spectrometry or liquid chromatography–mass spectrometry.

• A wide range of metabolites have been shown to be useful in distinguishing tumours
from healthy tissue and in monitoring cellular activities such as cell-cycle progression or
apoptosis.

• Metabolomic approaches have been used to study the function of hypoxia-inducible
factor 1 in tumour growth and shown that this transcription factor is involved in
increasing glucose metabolism, rather than inducing angiogenesis, in hepatomas.

• In vivo studies have shown that magnetic resonance spectroscopy can be used to identify
tumour types, especially brain tumours, by their metabolic profiles.

• As both nuclear magnetic resonance spectroscopy and mass spectrometry are high-
throughput technologies, these tools can be used to profile systemic metabolism in
tumour diagnosis and prognosis, through analysis of urine and blood plasma.

Figure 1 | The biological organization of the ‘-omes’. The
classical view of biological organization is to consider the flow
of information from the genome to the transcriptome, to the
proteome and then the metabolome. However, each tier of
organization depends on the other, so a perturbation in one
network can affect another. Furthermore, the environment has
a crucial impact on not only expression and concentrations of
transcripts, proteins and metabolites, but also on the genome
by selecting for adaptive changes in subpopulations of cells
within a tumour. Metabolomics can potentially probe much
more than classical metabolism and metabolic disorders — it
can also be used to monitor changes in the genome or to
measure the effects of downregulation or upregulation of a
specific gene transcript.
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results in a significant improvement in the resolution of
the spectrum obtained. This approach has several
advantages over NMR spectroscopy of tissue extracts.
Both aqueous and lipid-soluble metabolites can be
observed simultaneously in situ, whereas solution-state
NMR would require separate extraction procedures.
One of the first applications of this technique was to
distinguish between normal lymph nodes and those
that contained malignant cells31. Information about the
metabolic environment of the tumour can also be
obtained using HRMAS 1H NMR spectroscopy, which
can be used to identify metabolites with a range of
physical properties. These approaches have also been
used to follow the effects of various therapeutics on
tumour cells in vitro and in vivo.

Metabolomics has been used to study the changes that
occur in cancer cells in hypoxic regions of tumours,
which develop when a tumour outgrows is vasculature.
In these studies, the effects of HIF-1β deficiency on
tumour metabolism and growth were anaylsed in vivo and
in vitro using NMR spectroscopy35,36. The HIF-1 tran-
scription factor is a heterodimer that consists of HIF-1α
and HIF-1β subunits37,38. HIF-1 is upregulated in several
cancer cell types, resulting in the increased expression of
proteins involved in a range of metabolic pathways,
including glucose transporters, glycolytic enzymes and
growth factors such as vascular endothelial growth factor
(VEGF). So the rate of glycolysis is increased in these
tumours, along with angiogenesis induction.

HIF-1β-deficient hepatoma cells grown as solid
tumours in mice were found to have reduced rates of
growth compared with wild-type hepatoma cells. It
was not clear, however, whether this was a result of

of hypoxia inducible factor-1β (HIF-1β) in tumours and
to monitor the progression of therapy-induced apoptosis
in gliomas. Looking to the future, the technology could
be applied as a minimally invasive screening tech-
nique and as a bioprospecting tool to identify new
anticancer drugs.

Metabolomic profiles of cancer cells
NMR spectroscopy, including in vivo magnetic reso-
nance spectroscopy (MRS) and high-resolution solu-
tion-state analysis of tissue extracts, have been widely
used for several years to distinguish between different
cell lines and tumour types. Although NMR spec-
troscopy detects only a fairly small number of
metabolites, it can still be used to monitor the activity
of many cellular activities, because so many meta-
bolic pathways are connected. So changes detected in
the metabolome can be used to follow several seem-
ingly unrelated pathways. MRS has been used to
analyse several tumour types in humans and in ani-
mal models of cancer29,30, and despite limitations in
sensitivity and the ability to measure a broad range of
metabolites, metabolomic profiles have been success-
fully used to distinguish between tumours types and
between cell lines.

In vitro metabolomic studies have also demon-
strated several differences between tumour types, in
terms of various biochemical pathways17,18 (TABLE 2).
One technique, called high-resolution magic angle
spinning (HRMAS) 1H NMR spectroscopy, can pro-
duce high-resolution spectra from intact tissue31–34. A
biopsy or post-mortem sample of intact tissue is spun
at an angle to the applied magnetic field. The spinning

Box 1 | The main tools used in metabolomic studies

Nuclear magnetic resonance (NMR) spectroscopy 
Certain isotopes possess the property of magnetic spin, causing their nuclei to behave in a similar manner to a tiny bar
magnet. When they are placed in a magnetic field, the magnets either align or oppose the external magnet field. By
applying a radiofrequency to the nuclei, one can cause the nuclei to flip into the other magnetic state and the differences
in the populations between these two magnetic energy states can be detected as a radiowave as the system returns to
equilibrium. NMR analysis for metabolomics has centred on 1H and 13C NMR spectroscopy, although 31P NMR
spectroscopy has been used to measure high-energy phosphate metabolites and phosphorylated lipid intermediates.
Although this is a relatively insensitive technique, the approach can be used in a non-invasive manner, making it possible
to metabolically profile intact tissue using either high-resolution magic angle spinning 1H NMR spectroscopy of small
pieces of intact tissue25,31 or in vivo spectroscopy of the whole organ72. Current detection limits for 1H NMR spectroscopy
are of the order of 100 µM in a tissue extract or biofluid. Typical acquisition times are about 10 minutes. NMR-
spectroscopy analysis of biofluids has been shown to be highly reproducible, as samples analysed by this method have
produced similar results to those measured on other types of spectrometers73.

Gas chromatography– and liquid chromatography–mass spectrometry (MS)
Both approaches involve an initial chromatographic stage in which metabolites are separated either in the gas or solution
phase, respectively. Subsequently the metabolites are ionized and then separated according to their mass to charge ratio,
which can be used to identify the metabolites. MS-based approaches are more sensitive than NMR spectroscopy, and so
can potentially detect metabolites at a concentration two orders of magnitude below that of NMR. However, not all
metabolites can be ionized (converted to a positively or negatively charged species suitable for mass spectrometry) to an
equal extent, potentially biasing the information produced. This approach is the method of choice for plant
metabolomics23,24 where the challenge of profiling all the metabolites in a given tissue is even greater than that in
mammals and yeast. In spite of the fact that plant genomes typically contain 20,000–50,000 genes, 50,000 metabolites
have been identified in the plant kingdom with the number predicted to rise to about 200,000 (REF. 74), compared with
30–600 metabolites identified in mammalian cells. The current detection limits for MS-based approaches are of the order
of 100 nM, allowing the detection of about 1,000 metabolites, with typical acquisition times of about 30 minutes.
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Further experiments on HIF-1β-deficient and
wild-type hepatoma cell extracts were performed
using NMR-based metabolomic analysis. This
approach demonstrated a significant decrease in phos-
phocholine, choline, betaine and glycine35,36, indicating
the cause of the reduced ATP content in the mutant
cells. Glycine is formed from the glycolytic intermedi-
ate 3-phosphoglycerate and is an important source of
one-carbon units for the synthesis of nucleotides,
through serine. So if HIF-1β-deficient tumours had a
reduced rate of glycolysis and, therefore, glycine con-
tent, this would impair nucleotide synthesis and
reduce the concentration of ATP. Glycine can also be
produced through choline and betaine, which explains
the decreases detected in these metabolites.
Furthermore, increased choline metabolism would
produce an increased turnover in lipid membranes,
explaining the high ratio of PDE to P

i
detected.

Therefore, metabolomic studies of this type might be
used to identify metabolic pathways that could be tar-
geted therapeutically, to undermine the bioenergetic
status of the tumour.

the reduced vascularity because of decreased tumour
production of VEGF, or the failure to increase the rate
of glycolysis flux because of a lack of upregulation of
the glucose transporters (GLUT1 and GLUT3).
Intriguingly, T

2
RELAXATION MEASUREMENTS made by mag-

netic resonance imaging (MRI) and post-mortem
histological analysis showed no difference in vascu-
larity between the wild-type and HIF-1β-deficient
tumours35. However, in terms of high-energy phos-
phate metabolism, the mutant tumours had a fivefold
decrease in total ATP content and a threefold increase
in the ratio of phosphodiester (PDE) to inorganic
phosphate (P

i
). The increased ratio of PDE to P

i
indi-

cates an increase in phosphorylated cell-membrane
constituents, whereas the decrease in total ATP indi-
cates a reduction in the bioenergetic status of the
tumour. So the primary contribution of HIF-1 to the
growth of this tumour type seems to be an increased
rate of glucose metabolism, rather than the induction
of angiogenesis. This example illustrates how
metabolomics can be used to monitor the functions
of a gene product in tumours.

T
2

RELAXATION MEASUREMENTS

The nuclear magnetic resonance
(NMR) signal decays by several
physical processes, one of which
is T

2
relaxation. This rate of

relaxation is faster for
metabolites that are slowly
moving in the cell. NMR analysis
can exploit this property, to
selectively detect fast-tumbling
molecules, which include many
of the metabolites that are found
in the cytosol. These spectra are
referred to as ‘T

2
weighted’.

Table 1 | Different spectroscopic methods used in metabolomic analysis

Technique Description Advantages Disadvantages

Fourier-transform Uses vibrational frequencies of Cheap and good for high-throughput  Very difficult to identify which metabolites
infrared (FT-IR) metabolites to produce a first screening; used to differentiate are responsible for causing changes; very
spectrometry fingerprint of metabolism yeast respiratory-chain mutants poor at distinguishing metabolites within a

from wild-type strains77 class of compounds

Gas chromatography– The method of choice for plant A relatively cheap and reproducible Sample preparation can be time
mass spectrometry metabolomics; uses gas method that also has a high consuming; not all compounds are
(GC–MS) chromatography to separate degree of sensitivity suitable for gas chromatography

metabolite mixtures prior to
mass spectrometry to identify
the different metabolites

Liquid chromatography– A similar approach to GC–MS, This method is increasingly being More costly than GC–MS and depends on
mass spectrometry except separation occurs during used in place of GC–MS as sample the reproducibility of the liquid
(LC–MS) liquid chromatography preparation is not as time chromatography (potentially more difficult

consuming; similar in sensitivity to control than gas chromatography); also
to GC–MS can suffer from ion suppression, where

metabolites are poorly ionized when in the
presence of cations and anions

Metabolite arrays These devices use a 96-well plate Good as a screening tool when The number of metabolites that can be
assay system for phenotyping; produced for a given situation measured is limited by the number placed
such arrays have been used to on the chip; difficult to screen for
phenotype Escherichia coli unknowns and follow metabolism of
by 700 different assay mixtures xenobiotics
(‘assay-on-a-chip’)78

Nuclear magnetic This approach has been widely A non-invasive technique — the Lower sensitivity than mass spectrometry;
resonance (NMR) used by the pharmaceutical use of NMR spectroscopy co-resonant metabolites can be difficult
spectroscopy industry and in the screening demonstrates that metabolomic to quantify; drug metabolites can be

of patient urine and blood analysis of tissues in humans co-resonant with metabolites of interest
plasma samples is possible; it can be fully automated

and has a high degree of 
reproducibility; relatively easy to 
identify metabolites from simple 
one-dimensional spectra

Raman An extension of FT-IR and Has the advantage over FT-IR in Very difficult to determine which
spectroscopy79 ultraviolet/visible-light that water has only a weak Raman metabolites are responsible for causing

spectroscopy; relies on light spectrum and, therefore, many changes; very poor at distinguishing
scattering following irradiation functional groups can be observed classes of compounds
with a laser (for example, better distinction of 

carbon–carbon bonds)

Thin-layer Used to follow the metabolic fate Inexpensive Inter-assay variation, limited in terms of
chromatography of 14C-glucose in E. coli under the metabolites that can be quantified
(TLC) different culture conditions80
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One challenge to the use of one-dimensional 1H
NMR spectroscopy to investigate changes in lipid bio-
chemistry is that this tool distinguishes the chemical
groups present — for example, the total amount of
saturated lipid — rather than the actual chain length
of the lipids contained in the sample. This complicates
the process of delineating which metabolic pathways
are perturbed during apoptosis. However, using two-
dimensional NMR techniques, in conjunction with
HRMAS 1H NMR spectroscopy analysis of tumour
lipid extracts, the PUFA resonances observed in the
glioma study were shown to result from the accumu-
lation of 18:1 and 18:2 lipids. These lipids were likely
to be released as part of the apoptotic process during
the breakdown of membrane-bound vesicles. For
example, disruption of the mitochondrial membrane
would release cardiolipin, a lipid that is rich in PUFAs.
So, monitoring the early stages of PUFA accumula-
tion, using MRS, could provide a non-invasive way to
monitor the early effects of cancer treatment in
patients in vivo.

One shortcoming of this approach is that in regions
of the body outside the brain, it is difficult to detect sub-
tle changes in lipid profiles, because of the presence of
fatty tissues. Nonetheless, in analysis of breast ductal
carcinomas, which are surrounded by tissues that con-
tain large amounts of lipid, metabolic profiles that were
derived from HRMAS 1H NMR spectroscopy were
shown to accurately distinguish between normal tissue
and carcinomas. This was done by measuring alter-
ations in the T

2 
relaxation times of cellular metabolites,

which revealed that the concentrations of phospho-
choline, lactate and various lipids were correlated with
histopathological grade of tumours40.

This metabolomic approach has also been used to
analyse changes in low-molecular-weight metabolites
following apoptosis induction in the same rat glioma
model41. The metabolites investigated in this
approach included choline-containing metabolites,
amino acids, organic acids, osmolytes, nucleotides
and sugars. Both in vivo and in vitro NMR-
spectroscopy studies demonstrated that myo-inositol,
glycine and taurine concentrations were correlated
with the cell density of tumours, whereas the overall
concentration of choline-containing compounds was
unaffected by cell loss. However, analysis of the same
tumours using HRMAS 1H NMR spectroscopy
revealed separate peaks of choline, glycerophospho-
choline, phosphocholine, taurine and myo-inositol.
Furthermore, when these choline-containing
metabolites were measured using the clinical MRS
systems, their resonances were detected as a single
composite peak. So, although several MRS studies
have reported changes in levels of choline-containing
metabolites, it is difficult to determine which specific
metabolites are altered — this is a key problem with
the interpretation of in vivo data.

The analysis of intact tissue by HRMAS 1H NMR
spectroscopy in conjunction with pattern-recognition
techniques has also been used to study cervical biopsies.
Metabolomic profiles derived from this technique have

In addition to analysis of glycolysis, several studies of
tumour metabolism have focused on lipid metabolism,
particularly during apoptosis and necrosis19,20,39. One
such study involved a combination of in vivo, in vitro
and HRMAS 1H NMR spectroscopy in conjunction
with principal components analysis (BOX 2) to examine
polyunsaturated fatty acids (PUFAs) that accumulate in
BT4C gliomas in rats during gene-therapy-induced
apoptosis21. In this study, apoptosis was induced in rat
gliomas that carried a herpes simplex thymidine kinase
following administration of ganciclovir. Gliomas were
analysed post mortem using both MRS and HRMAS 1H
NMR spectroscopy. This analysis demonstrated that the
concentration of PUFAs increased threefold, as deter-
mined by increased CH=CH and CH=CHCH

2
CH=CH

resonances (FIG. 2). This increase in PUFA levels, which
was confirmed chromatographically using lipid extracts
of tissue, was much more pronounced than the general
increase in lipids previously detected in apoptotoic cells,
indicating that apoptosis in glioma cells might be
specifically associated with an increase in the amount
of unsaturated lipids. Furthermore, by examining the
LINE WIDTHS of the resonances of these lipids under dif-
ferent physical conditions, such as temperature and
SPINNING RATE, these lipids did not seem to be mem-
brane associated. These biophysical data, alongside
NMR measurements of the diffusion rates of these
lipids, indicate the PUFA lipids were most likely to be
the constituents of cytoplasmic lipid vesicles. These
cytoplasmic lipids are easy to detect in vivo using MRS
and could be used in the future to monitor the effi-
cacy of gene therapy in patients with glioma.
Furthermore, although histology and TUNEL STAINING

could be used to follow the rate of apoptosis in excised
tumours, the changes observed using NMR spec-
troscopy revealed specific pathways by which glioma
cells undergo apoptosis. It remains to be determined
whether this characteristic rise in polyunsaturated
lipids is a feature of other types of cancer cells as they
undergo therapy-induced programmed cell death.

LINE WIDTHS

The distance between the two
sides of a NMR signal
(resonance) at the half height of
the resonance. Each resonance
will have a line width that is
inversely dependent on the rate
of T

2
relaxation for that

resonance. Therefore,
metabolites that are slowly
moving have broad line widths.

SPINNING RATE

During high-resolution magic
angle spinning 1H nuclear
magnetic resonance
spectroscopy experiments
samples are spun at an angle 
(the so-called magic angle) to
the magnetic field to reduce 
line-broadening effects.

TUNEL STAINING  

(Terminal deoxynucleotidyl
transferase-mediated dUTP nick
and labelling). A procedure for
identifying apoptotic cells based
on the detection of DNA
cleavage.

Box 2 | Multivariate statistics

Pattern-recognition tools are a vital part of the process of metabolomics and are being
used to fully analyse the large multivariate data sets that are produced by other ‘-omic’
technologies75,76. Both unsupervised and supervised techniques can be used to derive
metabolic profiles. Supervised techniques use the information of class membership,
such as disease status, to classify a given data set and therefore should be tested by data
that are not used to build the pattern-recognition model. To investigate the innate
variation in a data set in an unsupervised manner, techniques such as principal
components analysis or hierarchical cluster analysis have been applied. However, in
situations in which specific questions are being posed, supervised techniques might be
more appropriate to either force classification (such as in determining which
metabolites distinguish between groups) or regress a pattern against a trend (such as
correlating a temporal progression with metabolic changes). Methods for supervised
pattern recognition include prediction to latent structures through partial least squares,
genetic programming and neural networks. Supervised approaches, such as orthogonal
signal correction, can also be used as a means of data filtering. For all the supervised
techniques it is necessary to test the sensitivity and reproducibility of the models
produced, although the biological function of the metabolites identified can also
indicate the success of the particular pattern-recognition tool.
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biopsy samples of human tumours49. This approach
has the advantage over technologies that are used at
present, which are based on NEURAL NETWORKS, in that it
is able to classify metabolites such as glutamine, gluta-
mate and alanine, rather than weighting a large series
of resonance intensities. Similarly, Gribbestad and col-
leagues have been able to identify low-molecular-
weight markers, including increases in choline and
reductions in glucose levels, for breast tumours50.
These studies, however, just scratch the surface of the
metabolic network, focussing on high-concentration
metabolites that dominate the NMR spectra.
However, they do provide proof of principal that
metabolomic profiles can be applied to tumours, and
the sensitivity of this approach will increase as
research progresses.

Several cross-centre studies, such as the Interpret
NMR database, are being developed as part of a collab-
oration between European hospitals to store and
analyse metabolic profiles of tumours46,51–53. An auto-
mated pattern-recognition approach has also been
implemented to help radiologists categorize MRS data
of brain tumours according to histological type and
grade. Using metabolic profiles, this system can suc-
cessfully distinguish meningiomas, low-grade astrocy-
tomas and aggressive tumours such as glioblastomas
and metastases. This pattern-recognition process was
even successful at predicting tumour type using data
acquired at separate hospitals using different model

correlated with histopathology results. For example, lac-
tate concentration was associated with metastatic
potential42. Features such as choline, amino-acid and
glucose levels were also correlated with patient outcome.

Metabolomic analysis is therefore a promising
approach to identify biomarkers that could be used in
the non-invasive monitoring of anticancer therapies,
particularly those that induce apoptosis. This could
also be used as a non-invasive tool for monitoring
tumour progression in animal models, which can not
be achieved using histology, transcriptomics or pro-
teomics. One drawback is that the number of metabo-
lites that can be detected in vivo is relatively small at
present, making it difficult to determine exactly which
metabolic pathways underlie a detected alteration.

Pattern recognition
Although there are many different approaches to 
collecting metabolic profiles of cells and tumours,
pattern-recognition software is needed to associate
specific profiles with different cell types, tumour types
or a stage of treatment. Large sets of MRS spectra,
analysed using intelligent pattern-recognition sys-
tems, have already been used in patient diagnosis for
various tumour types for more than a decade43–48.
Furthermore, these approaches have also been used to
identify ‘metabolic fingerprints’ associated with breast
and brain tumours49,50. Gray and colleagues used an
approach based on genetic programming to classify

NEURAL NETWORKS

Pattern-recognition processes
that iteratively search for the best
solution using a network
construction that is similar to
neurones in the brain.

Table 2 | Metabolic biomarkers of tumours 

Metabolite* Metabolic function Associated tumours/characteristics

Alanine In conjunction with lactate, increases in tissues during hypoxia; Hepatoma and brain tumours, including astrocytomas, 
made by transamination of pyruvate to prevent further metastases, gliomas, meningiomas and dysembryoplastic 
increases in lactate81 neuroepithelial tumours

Saturated lipids An important constituent of cell membranes, although membrane Alterations in levels associated with proliferation,
lipids are poorly resolved by NMR; lipid peaks detected by inflammation, malignancy, necrosis and apoptosis20,29,33,39,82

NMR are believed to either be present in cell-membrane
microdomains or in cytoplasmic vesicles

CCMs Include choline, phosphocholine, phosphatidylcholine and Levels change during apoptosis and necrosis;
glycerophosphocholine; these are key constituents of cell the tumour types that these changes have been found 
membranes in include brain, sarcomas, prostate and hepatoma31–34

Glycine An amino acid and an essential precursor for de novo Decreased following disruption of the HIF-1 signalling 
purine formation pathway36

Lactate An end product of glycolysis Increases rapidly during hypoxia and ischaemia; poorly 
vascularized tumours have a low intracellular pH as a result 
of increased lactate production; increased rates of lactate 
production have been associated with a range of tumours and,
in particular, certain types of neoplasms83

Myo-inositol Involved in osmoregulation and volume Increased in colon adenocarcinoma, glioma, schwannomas,
regulation ovarian carcinoma, astrocytoma and endometrial cells43,55;

decreased in breast tumours84

Nucleotides Used to manufacture DNA and RNA; also key metabolic Increased in glioma during apoptosis41; CDP-choline is also 
intermediates in fatty-acid and glycogen metabolism; increased during apoptosis19,85

changes in ATP concentration also indicate the 
energetic status of the tumour

PUFAs Constituents of cell membranes, especially mitochondrial Increased in glioma cells undergoing apoptosis20,21,
and in dedifferentiated and pleomorphic liposarcomas86

Taurine Important in osmoregulation and volume regulation; Increased in squamous-cell carcinoma87, prostate
hypotaurine is also an antioxidant and might protect cells cancer and liver metastasis88

from free-radical damage

*Metabolites identified by NMR spectroscopy of tissue extracts or magnetic resonance spectroscopy in vivo. CCM, choline-containing metabolites; CDP-choline, cytidine
diphosphocholine; HIF-1, hypoxia-inducible factor 1; NMR, nuclear magnetic resonance; PUFAs, polyunsaturated fatty acids.
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responsive and are therefore ideal for investigating drugs
that modulate the oestrogen receptor55. This study col-
lected metabolic fingerprints, made up of about 20
metabolites, in intact cells and generated pattern-recog-
nition models that correlated metabolic changes with
varying doses of different SERMs56. FIG. 3 shows the
advantages for using several pulse sequences to identify
metabolites. By making T

2
relaxation measurements

and using this process to weight the spectra, the contri-
bution of broad resonances, such as those from lipids,
can be reduced, allowing the detection of CO-RESONANT,
low-concentration metabolites. The metabolites
analysed in this model included ethanolamine, myo-
inositol, uridine and adenosine, revealing alterations in
both membrane turnover and transcription levels
(TABLE 2). Furthermore, the metabolic effects of other
oestrogen modulators could be monitored using this
pattern-recognition model. This identification of spe-
cific metabolomic fingerprints that are associated with
various drug types and dosages will allow researchers
to determine how well certain tumour cells respond to
different doses of drugs such as tamoxifen.

Metabolomic approaches have also been used to
identify surrogate biomarkers for the pharmaco-
dynamic monitoring of tumour responses to therapy in
human colorectal xenografts grown in mice57,58. The
drug 17-allylamino-17-demethoxygeldanamycin pre-
vents tumour-cell growth by inhibiting the action of
heat-shock protein 90. Although the exact in vivo mech-
anism of action of this drug is yet to be determined, 31P
NMR spectroscopy and in vitro metabolomic analysis
have indicated that one of its functions is to perturb

MRI instruments. So, pattern-recognition algorithms
are less sensitive to acquisition parameters than had
been expected.

These findings provide support for the creation of
central databases for high-resolution metabolomic data,
which would make it possible for researchers at different
locations to analyse and cross compare data using dif-
ferent platforms. Such databases are already being gen-
erated for transcriptional and proteomic data, allowing
the rapid transfer of information between research sites.
The development of metabolomic databases will also
lead to the production of better predictive software
packages, allowing this type of data to be used in patient
prognosis and diagnosis.

Drug development
Metabolomic tools can be used to monitor the effects of
anticancer drugs, and also to detect specific genetic
alterations in tumour cells. Pattern recognition models
and NMR spectroscopy have been used for several years
to follow metabolic changes that occur in tumours in
response to therapy. For example, neural networks have
been used to identify metabolic profiles of chemother-
apy-resistant gliomas in patients before treatment54. In
this regard, metabolic profiles could be used to predict
which tumours are most likely to respond or become
resistant to a specific type of therapy.

In a similar manner, high-resolution MAS 1H NMR
spectroscopy of intact Ishikawa cells was used to investi-
gate the action of tamoxifen and other specific oestro-
gen-receptor modulators (SERMs). Ishikawa human
endometrial adenocarcinoma cells are hormone

Figure 2 | An in vivo, in vitro and in situ study of apoptosis in tumours. One of the main benefits of nuclear magnetic
resonance (NMR) spectroscopy is its versatility. These spectra are taken from a study of apoptotic cells in rat glioma. Spectra
obtained from excised tumours using high-resolution magic angle spinning 1H NMR spectroscopy (a) were compared with spectra
acquired in vivo (b), to identify the key metabolic events that accompanied apoptosis. The main metabolic changes were associated
with polyunsaturated lipids (peak 1, CH=CH; peak 2, CH=CHCH2CH=CH) and choline levels (peak 3, phosphatidylcholine; peak 4,
phosphocholine; peak 5, choline). The x axis represents the chemical shift range displayed and the y axis indicates the time after
initiation of gene-therapy-induced apoptosis in tumours. Spectra reproduced with permission from REF. 21 © (2003) American
Association for Cancer Research. 
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cell lines. So, 31P NMR spectroscopy can be used both as
a tool to identify proliferative breast cancer cells, based
on the concentration of glycerophosphocholine levels,
as well as to identify new drug targets associated with
specific metabolic changes.

Finally, metabolomics is also being used as a bio-
prospecting tool. For example, Joshi and colleagues61

have used high-performance liquid chromatography
(HPLC)-based separation methods to investigate the
metabolic pathways responsible for saponin production
in the plant Acacia victoriae. Saponins have been shown
to be selectively toxic to tumour cells at very low doses,
although Acacia victoriae produce very small amounts of
these compounds. Further analysis of the metabolomic
profile of Acacia victoriae might lead to the identification
of ways to upregulate saponin production in these plant
cells, to provide enough material for clinical applications.
Metabolomics might also be used to identify the mecha-
nisms by which these compounds are specifically toxic to
cancer cells, by analysing the metabolomic profiles of
cells treated with this and similar drugs.

Diagnosis
The ease of automation for NMR-based metabolomics
also makes it an ideal technique for screening human
populations for common metabolic disorders. Systems
have already been developed to identify patients with
coronary artery disease using blood-plasma samples62. If
such systems can be applied to the clinic, they would be
much more cost-effective than highly invasive tech-
niques such as angiography, which is used to diagnose
coronary artery disease at present. High-throughput
analysis of biological fluids, which are obtained in a min-
imally invasive manner, could also be used to diagnose
cancer or follow therapy responses.

In a study of 52 patients, Bathen and colleagues63

used neural networks to examine the lipid profiles and
lipoprotein composition of blood plasma in patients
with a range of cancers compared with controls. Their
models were 83% accurate at predicting which patients
had tumours, based on the blood-plasma lipid profile,
and only 8% of patients were identified as false positives.
A similar approach has also been proposed for the diag-
nosis of colon cancer using NMR spectroscopy of whole
blood followed by analysis using neural networks64. This
method accurately distinguished between patients with
and without colon cancer in this small-scale study.
However, despite these promising initial results, no large-
scale clinical trial has validated the use of 1H NMR spec-
troscopy of blood plasma as a tool for diagnosing cancer.
Furthermore, the limited number of metabolites that
can be detected using this approach probably precludes
the identification of specific biomarkers for cancer.

High-throughput metabolomics is not confined 
to NMR spectroscopy, however. Although FOURIER-

TRANSFORM INFRARED (FT-IR) SPECTROSCOPY is generally poor at
identifying specific metabolites, the metabolic finger-
prints produced by the approach can be used to identify
cells that are in specific phases of the cell cycle, as well as
to distinguish between different cell types by measuring
changes in spectral features that result from differences

cell-membrane metabolism. These types of character-
istic metabolic perturbations can also be used to follow
treatment efficacy in vivo. The biochemical actions of
R-roscovitine (CYC202) — an inhibitor of the cyclin-
dependent kinases-1, -2 and -7 — is also being investi-
gated in a similar manner, using a combined in vivo
and in vitro metabolomic approach59. This approach
has shown that CYC202 decreases the bioenergetic sta-
tus of the tumour, produces intracellular acidosis and
decreases the glycerophosphocholine, glutamate and
glycine concentrations of the cell. Further studies are
required to determine how this information relates to
the inhibition of cylin-dependent kinases and the
treatment of tumours.

Phospholipid metabolism has been investigated in
breast cancer cells during exposure to the antimitotic
drugs paclitaxel, vincristine, colchicine, nocodazole,
methotrexate and doxorubicin using 31P NMR 
spectroscopy 60. Intriguingly, these studies found that
antimitotic drugs cause a large increase in glycerophos-
phocholine that was not associated with changes in cell-
membrane composition and that this change could be
further increased by synchronizing cells in the G2–M
phase. This indicates a correlation between microtubule
status and cellular phospholipid metabolism in these

CO-RESONANT METABOLITES

Nuclear magnetic resonance
(NMR) spectroscopy detects the
chemical groups that make up a
molecule. Some metabolites
have regions that are chemically
very similar and therefore occur
in the same position in the NMR
spectrum. When the individual
peaks (resonances) from two or
more metabolites can not be
distinguished, they are said to be
‘co-resonant’. This confounds
direct quantification.

Figure 3 | Monitoring the action of tamoxifen on endometrial cells. High-resolution magic
angle spinning 1H NMR spectroscopy was used to analyse endometrial cells that were treated with
tamoxifen. This approach allows the use of pulse sequences that can measure the effects of the
cellular environment. a and b show the aliphatic region of two T2-weighted spectra. Spectra were
acquired with 10 ms (a) and 320 ms (b) total spin echo time. This sequence does not show large
lipid resonances and macromolecules, improving the detection of aqueous metabolites. T2-
weighted spectroscopy allowed the monitoring of nucleotide metabolism in these cells. The
increase in a number of nucleotides indicated that tamoxifen increased the proliferative capacity of
the endometrial cells. Peaks are numbered as follows: peak 1, CH3CH2 lipid groups; peak 2,
leucine, valine and isoleucine; peak 3, lactate; peak 4, CH2CH2 lipid groups; peak 5, alanine; peak 6,
COCH2CH2 lipid groups; peak 7, C=CHCH2CH2 lipid groups; peak 8, acetyl groups; peak 9,
glutamate; peak 10, creatine; peak 11, choline; peak 12, phosphocholine; peak 13,
glycerophosphocholine/phosphatidylcholine; peak 14, phosphoethanolamine; peak 15, taurine;
peak 16, myo-inositol. Spectra reproduced with permission from REF. 55 © (1998) Marcel Dekker.
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using [1,2-13C
2
]glucose to label a proportion of the

metabolome and therefore identify which metabolic
pathways metabolize glucose. Proliferating tumour
cells have a distinct metabolic phenotype, character-
ized by increased and preferential utilization of
glucose through the non-oxidative pathway of the
pentose cycle for nucleic-acid synthesis, with a
reduced rate of de novo fatty-acid synthesis and tri-
carboxylic-acid-cycle glucose oxidation. By using
steady-state labelling of intermediates of the PENTOSE-

PHOSPHATE PATHWAY as biomarkers of cell proliferation,
these approaches could be extended to assess the efficacy
of therapeutics that aim to inhibit cell proliferation.

The results from the HRMAS 1H NMR spec-
troscopy investigations of tumours have demon-
strated the importance of being able to separate out
co-resonant metabolites, and indicate that the best
approach might be to use methods such as GC–MS
and LC–MS or LC–NMR for the analysis of het-
erogenous samples such as biofluids and tissue
extracts. These techniques can separate many chemi-
cally similar metabolites for analysis by chromato-
graphically separating metabolites before analysis.
This both concentrates the metabolites and eases
their detection. However, one study21 has shown that
HRMAS 1H NMR spectroscopy of intact tissue can
be used to detect ‘active’ metabolites, as opposed to
components of the cell membrane and other com-
partments where metabolic turnover is very slow.
Therefore, HRMAS 1H NMR spectroscopy is a useful
technique for following metabolic changes in the
cytosol, whereas tissue-extraction procedures often
dilute these metabolites, as they also include cell-
membrane constituents. As it seems that many of the
key metabolic events associated with apoptosis occur
in the cytosol, HRMAS 1H NMR spectroscopy will
become increasingly important as a metabolomic
tool. It is also being used to confirm the metabolic
events measured, in vivo, using MRS71.

NMR- and mass-spectrometry-base metabolomic
approaches have the unusual property, in terms of
‘-omic’ approaches, of being both high throughput
and relatively inexpensive. Like gene-expression pro-
filing, this approach allows researchers to screen large
populations and identify interesting subsets for fur-
ther analysis. Unlike DNA microarrays, there are few
costs on a per-sample basis after the initial equipment
purchase. Metabolomic approaches also generate
highly reproducible data sets. One disadvantage is
that the number of metabolites that exist in a mam-
malian tissue is probably far smaller than the number
of transcripts that are present in the mammalian
transcriptome. Therefore, a given metabolite pattern
can reflect several genomic changes. It is also not 
a trivial matter to connect the genome to the
metabolome, complicating attempts of using
metabolomics as a functional genomic tool in cancer
research. Metabolomic approaches, however, will
become increasingly popular in disease diagnosis 
and will have an important role in improving our
understanding of the mechanisms of cancer.

in DNA. FT-IR has also been used to follow the matu-
ration of cervical cancer cells, through changes in
glycogen metabolism65, as well as for dividing chronic
lymphocytic leukaemia samples into different sub-
groups, based largely on DNA content66. In a similar
manner RAMAN SPECTROSCOPY, which relies on the measure-
ment of scattered light as it passes through a sample, is
being used to monitor neoplastic colon tissue67.

Metabolomic approaches are also being used by
nutritionists who are interested in examining the link
between nutrition and resistance to certain cancers68. A
range of systems are being used, including cell-culture
strategies and samples from human population studies.
Large data sets must be examined to understand the
relationships between genetic polymorphisms, demo-
graphics, environment, diet and cancer risk. The analy-
sis of biofluids by NMR spectroscopy and approaches
based on liquid chromatography–mass spectrometry
(LC–MS) provide an unrivalled tool for analysing sam-
ples from large populations in that these techniques are
both high throughput, reproducible and cost effective.
Current research includes studies of nutrients that mod-
ulate DNA damage and repair, DNA methylation, gene
expression, antioxidant production and oxidative stress,
signal transduction, cell-cycle control, apoptosis and
anti-angiogenic processes.

Future directions
Most of the recent research into tumour meta-
bolomics has come from NMR-based studies, reflect-
ing the potential of MRS in terms of clinical diagnosis.
However, given the greater sensitivity of mass spec-
trometry, the combined use of NMR spectroscopy
with either GC–MS or LC–MS for the analysis of tissue
and cell extracts will clearly increase. New technologi-
cal advances will also improve the information that
can be obtained using NMR. Increased automation
will allow the rapid generation of metabolomic data-
bases to assist in patient screening. Improved sensitiv-
ity will also be possible using cryogenically cooled
NMR probes, known as CRYOPROBES. This approach
reduces the amount of electronic noise in the NMR
signal and therefore significantly improves sensitivity.
Miniaturization will also allow the examination 
of smaller, and potentially more homogeneous,
samples, particularly when used in conjunction with
laser-capture techniques69.

The advent of cryoprobe technology also makes it
possible to study nuclei such as 13C in tissue extracts.
Carbon-13 NMR is less sensitive than 1H and 31P
NMR, as a result of a lower LARMOR FREQUENCY at a
given field strength and its lower natural abundance
(BOX 1). Despite this lower level of overall sensitivity,
the sensitivity in biological samples is greater, as a
result of the larger chemical shift range of 13C com-
pared with 1H — this reduces co-resonances and
improves the detection of key markers. One study
that shows the potential of 13C NMR spectroscopy
was carried out by Boros and colleagues70, and
described a technique for stable isotope-based
dynamic metabolic profiling. The approach relies on

FOURIER-TRANSFORM

INFRARED SPECTROSCOPY 

Spectroscopic technique based
on examining the vibrational
frequencies of given molecules.
When a molecule absorbs
infrared radiation of a defined
energy, vibrations are induced in
the molecule. However, these
vibrations must involve an
electrical dipolar change in the
molecule. In general, this
technique is poor at
discriminating metabolites from
a similar class of compounds.

RAMAN SPECTROSCOPY

When a metabolite is irradiated
by light from a laser, the light is
scattered with either the same
amount of energy (Rayleigh
scattering), or with more
(Stokes) or less (anti-Stokes)
energy because of changes in the
vibrational energy of the
metabolite. This Stokes and anti-
Stokes scattering is observed in
Raman spectroscopy.

CRYOPROBE

Nuclear magnetic resonance
(NMR) probes for which the coil
and pre-amplifier have been
cryogenically cooled to reduce
the amount of electronic noise
in the NMR signal. They
increase the signal-to-noise ratio
by a factor of 3–4, compared
with conventional probes. This
can reduce experiment time 
16-fold or required sample
concentration by up to 4-fold.

LARMOR FREQUENCY

When a magnet or dipole is
placed in a magnetic field, a
torque is placed on it, called a
‘magnetic moment’, causing it to
align with the magnetic field. For
an electron, however, the
magnetic moment is produced
by the orbital motion of the
electron about the nucleus. This
produces a force that causes the
magnetic moment to process
around the direction of the
magnetic field at a frequency
termed the Larmor frequency.

PENTOSE-PHOSPHATE PATHWAY

An anabolic pathway that uses
the six carbons of glucose to
generate five-carbon sugars. The
roles of this pathway are to
generate NADPH for
biosynthesis reactions, to
provide cells with ribose-5-
phosphate for nucleotide
synthesis and to metabolize
pentose sugars.
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