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Abstract
Radiological images are increasingly being used in healthcare and medical re-
search. There is, consequently, widespread interest in accurately relating infor-
mation in the different images for diagnosis, treatment and basic science. This
article reviews registration techniques used to solve this problem, and describes
the wide variety of applications to which these techniques are applied. Applica-
tions of image registration include combining images of the same subject from
different modalities, aligning temporal sequences of images to compensate for
motion of the subject between scans, image guidance during interventions and
aligning images from multiple subjects in cohort studies. Current registration
algorithms can, in many cases, automatically register images that are related
by a rigid body transformation (i.e. where tissue deformation can be ignored).
There has also been substantial progress in non-rigid registration algorithms
that can compensate for tissue deformation, or align images from different sub-
jects. Nevertheless many registration problems remain unsolved, and this is
likely to continue to be an active field of research in the future.

Summary of notation

A An image (reference or target)
B A second image to be aligned with A

x A point
{xi} A set of points
xA A point in image A

A(xA) The value of image A at position xA

T The spatial transformation (mapping) from B to A

L A linear transformation
T The transformation that maps both position and intensity (i.e. takes account of

interpolation and sampling)
BT Image B transformed into the coordinate space of image A

�̃A The imaged volume or field of view i.e. continuous domain of image A

�A The discrete domain of image A
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�B The discrete domain of image B

�T
A,B The overlap domain of images A and B for a given transformation estimate T

N =∑
�T

A,B
1 The number of pixels or voxels in the overlap domain of images A and B

�a An isointensity set (level set) in image A with intensity a

�T
a The isointensity set of A in the overlap domain

�T
a,b Overlapping isointensities

pi , qi Points p, q
p A probability value (between 0 and 1)
pT
AB(a, b) Joint probability density function: the probability that a voxel in the overlap

domain has intensity a in A and b in BT

F Intensity mapping function (makes image A look like image B)
A|�T

A,B
Image A in the overlap domain

BT |�T
A,B

Image B in the overlap domain

µ Mean
σ Standard deviation
ς Sample spacing in a discrete image
�ςA

Sampling grid for image A

E Euclidean space

R Real numbers (1.2, π ,
√

2, etc)
∈ In (element of)
∀ For all

1. Introduction

Medical images are increasingly being used within healthcare for diagnosis, planning
treatment, guiding treatment and monitoring disease progression. Within medical research
(especially neuroscience research) they are used to investigate disease processes and understand
normal development and ageing. In many of these studies, multiple images are acquired from
subjects at different times, and often with different imaging modalities. In research studies, it
is sometimes desirable to compare images obtained from patient cohorts rather than just single
subjects imaged multiple times. Furthermore, the amount of data produced by each successive
generation of imaging system is greater than the previous generation. This trend is set to
continue with the introduction of multislice helical CT scanning and MR imaging systems
with higher gradient strengths. There are, therefore, potential benefits in improving the way in
which these images are compared and combined. Current clinical practice normally involves
printing the images onto radiographic film and viewing them on a light box. Computerized
approaches offer potential benefits, particularly by accurately aligning the information in the
different images, and providing tools for visualizing the combined images. A critical stage in
this process is the alignment or registration of the images, which is the topic of this review
article. There have been previous surveys of the medical image registration literature (e.g.
Maurer and Fitzpatrick 1993, van den Elsen et al 1993, Maintz and Viergever 1998). This
article aims to complement them both by describing some more recent literature and by using
notation that makes clear some of the practical difficulties in implementing robust registration
techniques. Furthermore, this article focuses discussion on some of the most widely used
registration algorithms rather than attempting to provide a comprehensive survey of all the
literature in this field. For this reason, some very recently devised algorithms are not described,
as it is not yet clear whether they will become widely used.
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In this article we describe the main approaches used for the registration of radiological
images. The most widely used application of medical image registration is aligning
tomographic images. That is aligning images that sample three-dimensional space with
reasonably isotropic resolution. Furthermore, it is often assumed that between image
acquisitions, the anatomical and pathological structures of interest do not deform or distort.
This ‘rigid body’ assumption simplifies the registration process, but techniques that make
this assumption have quite limited applicability. Many organs do deform substantially, for
example with the cardiac or respiratory cycles or as a result of change in position. The brain
within the skull is reasonably non-deformable provided the skull remains closed between
imaging, and that there is no substantial change in anatomy and pathology, such as growth
in a lesion, between scans. Imaging equipment is imperfect, so regardless of the organ being
imaged, the rigid body assumption can be violated as a result of scanner-induced geometrical
distortions that differ between images. Although the majority of the registration approaches
reviewed here have been applied to the rigid body registration of head images acquired using
tomographic modalities, there is now considerable research activity aimed at tackling the
more challenging problems of aligning images that have different dimensionality (for example
projection images with tomographic images), aligning images of organs that deform, aligning
images from different subjects, or of aligning images in ways that can correct for scanner-
induced geometric distortion. This is quite a rapidly moving research field, so the work
reviewed in these areas is more preliminary.

For all types of image registration, the assessment of registration accuracy is very
important. The required accuracy will vary between applications, but for all applications
it is desirable to know both the expected accuracy of a technique and also the registration
accuracy achieved on each individual set of images. For one type of registration algorithm,
point-landmark registration, the error propagation is well understood. For other approaches,
however, the algorithms themselves provide no useful indication of accuracy. The most
promising approach to ensuring acceptable accuracy is visual assessment of the registered
images before they are used for the desired clinical or research application.

Although this review concentrates on registration of radiological images of the same
subject (intrasubject registration), there is some discussion of the closely related topics of
intersubject registration, including registration of images of an individual to an atlas, and
image-to-physical space registration.

1.1. Types of images

The term ‘medical image’ covers a wide variety of types of images, with very different
underlying physical principles, and very different applications. The sort of images used in
healthcare and medical research vary from microscopic images of histological sections to
video images used for remote consultation, and from images of the eye taken with a fundus
camera to whole body radioisotope images. In principle, medical image registration could
involve bringing all the information from a given patient, whatever the form, together into a
single representation of the individual that acted like a multimedia electronic patient record
with implicit information about the spatial and temporal relationship between all the image
information. The huge variety of spatial and temporal resolutions and fields of view of
the different images makes this difficult, and the clinical benefit of such an approach has
not yet been demonstrated. Recent developments in medical image registration have been
driven less by this dream of unifying image information than by the practical desire to make
better use of certain types of image information for specific clinical applications or in medical
research.
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In this article we primarily consider the main radiological imaging modalities. These
include traditional projection radiographs, with or without contrast and subtraction, nuclear
medicine projection images, ultrasound images and the cross-sectional modalities of x-ray
computed tomography (CT), magnetic resonance imaging (MRI), single photon emission
computed tomography (SPECT) and positron emission tomography (PET). We refer to these
last four modalities (CT, MRI, SPECT and PET) as the tomographic modalities. In many ways
these are the easiest modalities from the point of view of image registration. They provide
voxel datasets in which the sampling is normally uniform along each axis, though the voxels
themselves tend to have anisotropic resolution. In a projection x-ray, each pixel represents
the integral of attenuation along one of a set of converging lines through the patient, and they
represent a superposition of structures in the patient with varying magnification. Many nuclear
medicine images acquired with gamma cameras are parallel projections, in which each pixel
represents the integral along one of a set of parallel lines through the patient. It is, therefore,
a superposition of structures in the patient all at the same magnification (though at different
resolutions). The majority of ultrasound images are acquired with a free-hand transducer.
Each image is a two-dimensional slice through part of the patient. The images are acquired
at a high frame rate, but the spatial relationship between the frames is not recorded. If the
transducer is moved in a controlled way or tracked, the relative positions of the frames can be
recorded, and a three-dimensional dataset obtained, provided the structures being tracked are
not moving or deforming during the acquisition.

Video images are often acquired during surgery, for example using endoscopes or
microscopes. For the purpose of image guidance, it can be useful to relate the video images
to preoperatively acquired diagnostic images. Video images are, like radiographs and many
nuclear medicine images, projections. They differ, however, in that they normally only contain
information about the surface of structures in the field of view, rather than a superposition
of overlying structures. There is a huge computer vision literature on estimating three-
dimensional shapes from one or more video camera views. Video images can be aligned
with tomographic images either by first extracting surface structures, or directly.

2. Definitions, notation and terminology

In this article we use the term ‘registration’ to mean determining the spatial alignment between
images of the same or different subjects, acquired with the same or different modalities, and
also the registration of images with the coordinate system of a treatment device or tracked
localizer. Other authors distinguish between different categories of alignment using the words
registration, co-registration and normalization. The term normalization is usually restricted
to the intersubject registration situation, and registration and co-registration are often used
interchangeably. The algorithms used for all these applications have many features in common,
so we prefer to use the term registration for all cases.

The word registration is used with two slightly different meanings. The first meaning is
determining a transformation that can relate the position of features in one image or coordinate
space with the position of the corresponding feature in another image or coordinate space. We
use the symbol T to represent this type of positional registration transformation. The second
meaning of registration both relates the position of corresponding features and enables us to
compare the intensity at those corresponding positions (e.g. to subtract image intensity values).
We use the symbol T to describe this second meaning of registration, which incorporates the
concepts of resampling and interpolation.

Using the language of geometry, the registration transformation is referred to as a mapping.
We can consider the mapping T , that transforms a position x from one image to another, or
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from one image to the coordinate system of a treatment device (image to physical registration)

T : xA 	→ xB ⇔ T (xA) = xB. (1)

Using this notation, T is a spatial mapping. We also need to consider the more complete
mapping T that maps both position and associated intensity value from image A to image B.
T therefore maps an image to an image, whereas T maps between coordinates. If we wish to
overlay two images that have been registered, or to subtract one from another, then we need
to know T , not just T . T is only defined in the region of overlap of the image fields of view,
and has to take account of image sampling and resolution. A(xA) is the intensity value at the
location xA, and similarly for image B1. It is important to remember that the medical images
A and B are derived from a real object, i.e. the patient. The images have a limited field of view
that does not normally cover the entire patient. Furthermore, this field of view is likely to be
different for the two images.

We can usefully think of the two images themselves as being mappings of points in the
patient within their field of view (or domain �) to intensity values

A : xA ∈ �A 	→ A(xA)

B : xB ∈ �B 	→ B(xB).

Because the images are likely to have different fields of view, the domains �A and �B will be
different. This is a very important factor, which accounts for a good deal of the difficulty in
devising accurate and reliable registration algorithms. We will return to this issue in section 2.1.

To compare images A and B, we would like them both to be defined at the location xA,
so that we can write B(xA). This is wrong, however, as B is not defined at location xA.
We therefore introduce the notation BT for the image B transformed with a given mapping
T . If T accurately registers the images, then A(xA) and BT (xA) will represent the same
location in the object to within some error depending on T . If we didn’t have to worry about
interpolation, we could write BT (xA) instead of BT (xA), but due to the discrete nature of
medical images, discussed further in section 2.2, interpolation is necessary for any realistic
transformation.

As the images A and B represent one object X, imaged with the same or different
modalities, there is a relation between the spatial locations in A and B. Modality A is such
that position x ∈ X is mapped to xA, and modality B maps x to xB . The registration process
involves recovering the spatial transformation T which maps xA to xB over the entire domain of
interest, i.e. which maps from�A to�B within the overlapping portion of the domains. We refer
to this overlap domain as �T

A,B . This notation makes it clear that the overlap domain depends
on the domains of the original images A and B, and also on the spatial transformation T . The
overlap domain is the positions in the domain of image A that are also in the domain of image
B after transformation, and can be defined as:

�T
A,B = {xA ∈ �A|T −1(xA) ∈ �B}.

As stated earlier, the transformation T maps both position, and intensity at that position, from
one image to another, taking account of issues to do with sampling and interpolation. It is
important to emphasize, however, that T is not an intensity mapping: it does not make imageB
look like image A by giving a position in image BT (xA) the same intensity as A(xA). We use
the symbol F to represent that mapping of intensities from one image to another. For two
images differing only by noise, F will be the identity. In general F will be a spatially varying
(non-stationary) function that is not monotonic.

1 A(xA) and B(xB) are normally scalars, but in some circumstances can be vectors (e.g. flow) or tensors (e.g.
diffusion). Non-scalar voxel values can add further complications to image transformation which are not addressed
in this article.
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Registration algorithms that make use of geometrical features in the images such as points,
lines and surfaces, determine the transformation T by identifying features such as sets of image
points {xA} and {xB} that correspond to the same physical entity visible in both images, and
calculating T for these features. When these algorithms are iterative, they iteratively determine
T , and then infer T from T when the algorithm has converged.

Registration algorithms that are based on image intensity values work differently. They
iteratively determine the image transformation T that optimizes a voxel similarity measure.
Many of these voxel similarity measures involves analysing isointensity sets (or level sets)
within the images. For a single image A, an isointensity set with intensity value a is the set of
voxels within a subdomain of A, such that

�a = {xA ∈ �A|A(xA) = a}. (2)

This equation, put into words, states ‘all locations xA in the field of view of image A for which
the intensity value is a’.

Some algorithms do not work on isointensity sets corresponding to a single intensity value,
but on isointensity sets corresponding to small groups, or bins, of intensities. For example a
12-bit image may have its intensities grouped into 256 4-bit bins. We use a to mean either
individual intensities or intensity bins, as appropriate.

It is important to remember that�a is the isointensity set within all of imageA that is within
the domain �A. As has been stated above, for registration using voxel similarity measures,
we work within the overlap domain �T

A,B . The isointensity set within this overlap domain is,
of course, a function of T . To emphasize this T dependence, we define the isointensity set of
image A with value a, within �T

A,B as

�T
a = {xA ∈ �T

A,B |A(xA) = a}. (3)

Similarly, we can consider an isointensity set in image B. Image B, of course, is always
the image that we consider transformed, so the definition is slightly different from that for
image A. We consider the isointensity set to be the set of voxels in the space A that have
intensity b in image BT

�T
b = {xA ∈ �T

A,B |BT (xA) = b}. (4)

2.1. Consequences of different image fields of view

For the 3D intrasubject registration task that we are focusing on here, the object being imaged
is the same for images A and B, and, while the domains �A and �B are different in extent and
position, they are both three dimensional. The overlap domain�T

A,B is, in general, smaller than
either�A or�B , and is also a function of the transformation T . The latter point is important and
sometimes overlooked. For registration algorithms that make use of corresponding geometrical
features, the difference in field of view of images A and B can cause difficulties, as features
identified in one image may not be present in the second. The dependence of �T

A,B on T

as the algorithm iterates is, however, less important. Greater difficulties arise for registration
algorithms that make use of image intensity values to iteratively determine T . The isointensity
sets used by these algorithms are the sets of fixed intensities within �T

A,B . Since �T
A,B changes

with T , algorithms that are too sensitive to changes in �T
A,B may be unreliable.

The difficulty caused by the different field of views of imagesA andB is further illustrated
by considering an approach to rigid body registration called the method of moments (Faber
and Stokely 1988). When applying this to images of a part of the body, e.g. the head, that
part of the body is first delineated from images A and B using a segmentation algorithm,
giving the binary volumes OA and OB . The images can then be registered by first aligning the
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centroids (from the first-order moment) of OA and OB , and then aligning the principal axes
of OA and OB (from the second-order moment). This approach is, however, unsatisfactory
for most medical image registration applications because the first- and second-order moments
are highly sensitive to change in the image field of view. In order for this method to work
accurately, the object used for the calculations must be entirely within�T

A,B , and it is frequently
difficult to delineate appropriate structures with this property from clinical images.

To emphasize the importance of this overlap domain in image registration, we introduce
notation to make this clear. A|�T

A,B
and BT |�T

A,B
are the portions of image A and BT

respectively in the overlap domain. The use of the A|�T
A,B

and BT |�T
A,B

notation is equivalent

to A(xA)∀ xA ∈ �T
A,B and BT (xA)∀ xA ∈ �T

A,B .

2.2. The discrete nature of the images

A further important property of the medical images with which we work is that they are discrete.
That is, they sample the object at a finite number of voxels in three dimensions or pixels in two
dimensions. In general, this sampling is different for imagesA andB; also, while the sampling
is commonly uniform in a given direction, it is anisotropic, that is it varies with direction in
the image. Discretization has important consequences for image registration, so it is useful to
build this concept into our notational framework.

We can define our domain � as

� = �̃ ∩ �ς

where �̃ is a bounded continuous set, and could be called the volume or field of view of the
image, and � is an infinite discrete grid. � is our sampling grid, which is characterized by
the anisotropic sample spacing ς = (ςx, ςy, ςz). The sampling is normally different for the
images A and B being registered, and we denote this by introducing sampling grids �ςA

and
�ςB

for the domains �A and �B .
For any given T , the intersection of the discrete domains �A and T (�B) is likely to be the

empty set, because no sample points will exactly overlap. In order, therefore, to compare the
images A and B for any estimate of T , it is necessary to interpolate between sample positions
and to take account of the difference in sample spacing ςA and ςB . This introduces two
problems. Firstly, fast interpolation algorithms are imperfect, introducing blurring or ringing
into the image (discussed further in section 9). This changes the image histograms, and hence
alters the isointensity sets discussed above. Secondly, we must be careful when the image
B being transformed has higher-resolution sampling than image A (i.e. one or more of the
elements in ςB is less than the corresponding element in ςA). In this case, we risk aliasing
when we resample B from �B to �T

A,B , so we should first blur B with a filter of resolution ςA
or lower before resampling.

As stated earlier, the transformation T maps both positions and intensities at these
positions. T , therefore, has to take account of the discrete sampling. The spatial mapping T ,
in contrast, does not take account of this effect. When we use T as a superscript of a symbol,
as in BT , we are making it clear that the quantity represented by this symbol is dependent on
both the spatial mapping T and the interpolation or blurring used during resampling. Figure 1
illustrates the relationship between field of view, domain of the image and the registration
transformation.
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Figure 1. Two images A and B illustrated in the top panel of this figure have different fields of
view �̃A and �̃B . For a registration transformation T there will be a region of overlap between the
images as illustrated in the third panel. It is important to remember that the images are discrete.
The discretization is determined by the sampling grids �ςA and �ςB shown in the fourth panel.
Even if images A and B have exactly the same sampling grid, the grid points will not normally
coincide in the volume of overlap as shown in the fifth panel. Interpolation is therefore necessary.
For iterative registration algorithms, this interpolation is necessary at each iteration. The image
transformation T described in the text maps both position and the associated intensity in the images
within the region of overlap, incorporating the concepts of field of view and discrete sampling.

3. Types of transformation

We have not, so far, discussed the nature of the transformation T . For most current applications
of medical image registration, both�A and�B are three dimensional, so T transforms from 3D
space to 3D space. In some circumstances, such as the registration of a radiograph to a CT scan,
it is useful to consider transformations from 3D space to 2D space (or vice versa). Where both
images being registered are two dimensional (e.g. two radiographs before and after contrast is
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injected), the appropriate transformation might be from 2D space to 2D space2. Most medical
image registration algorithms additionally assume that the transformation is ‘rigid body’, i.e.
there are six degrees of freedom (or unknowns) in the transformation: three translations and
three rotations. The key characteristic of a rigid body transformation is that all distances are
preserved.

Some registration algorithms increase the number of degrees of freedom by allowing for
anisotropic scaling (giving nine degrees of freedom) and skews (giving 12 degrees of freedom).
A transformation that includes scaling and skews as well as the rigid body parameters is referred
to as affine, and has the important characteristics that it can be described in matrix form and
that all parallel lines are preserved. A rigid body transformation can usefully be considered as
a special case of affine, in which the scaling values are all unity and the skews all zero.

Individual bones are rigid at the resolution of radiological imaging modalities, so rigid
body registration is widely used in medical applications where the structures of interest are
either bone or are enclosed in bone. By far the most important part of the body registered
in this way is the head, and in particular the brain. Rigid body registration is used for other
regions of the body in the vicinity of bone (e.g. the neck, pelvis, leg or spine) but the errors
are likely to be larger.

The use of an affine transformation rather than a rigid body transformation does not greatly
increase the applicability of image registration, as there are not many organs that only stretch
or shear. Tissues usually deform in more complicated ways. There are, however, several
scanner introduced errors that can result in scaling or skew terms, and affine transformations
are sometimes used to overcome these problems (see section 4).

For most organs in the body, many more degrees of freedom are necessary to describe
the tissue deformation with adequate accuracy. Even in the brain, development of children,
lesion growth or resection can make a affine transformations inadequate. Also, it is common
in neuroscience research to align images from different subjects. This is called intersubject
registration and is discussed in section 10.4.3. While an affine transformation is widely used
to provide an approximate alignment of different subjects, additional degrees of freedom are
needed for more accurate registration. These non-affine registration transformations are not
the main focus of this article, but some approaches for both intrasubject and intersubject
registration are described in section 10.4.

3.1. Linear transformations

Many authors refer to affine transformations as linear. This is not strictly true, as a linear map
is a special map L which satisfies

L(αx + βx′) = αL(x) + βL(x′) ∀x,x′ ∈ R
D.

The translational parts of affine transformations violate this. An affine map is more correctly
described as the composition of linear transformations with translations.

Furthermore, reflections are a linear transformation, but they are normally undesirable
in medical image registration. For example, if a registration algorithm used in image-guided
neurosurgery calculated a reflection as part of the transformation it might result in a patient
having a craniotomy on the wrong side of his or her head. If there is any doubt about whether an
algorithm might have calculated a reflection, this should be checked prior to use. Since affine
transformations can be represented in matrix form, a reflection can be detected simply from

2 Although the images being registered may be 2D, the structures being imaged are often free to translate, rotate and
deform in three dimensions.
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a negative value of the determinant of this matrix. When we refer to affine transformations
elsewhere in this article we exclude reflections as they are undesirable in this application.

3.2. One-to-one transformations

For intrasubject registration, the object being imaged with the same or different modalities
is the same patient. It would at first seem likely that the desired transformation T should be
one-to-one (bijective). This means that each location in image B gets transformed to a single
point in image A and vice versa. There are several situations in which this does not happen.
Firstly, if the dimensionality of the images is different such as in the registration of a radiograph
to a CT scan, a one-to-one transformation is impossible. The differences in image field of view
and sampling discussed in sections 2.1 and 2.2 also complicate this issue.

For various types of non-affine registration, a one-to-one transformation is not desirable.
For example in registration of images from different subjects, or of the same subject before
and after surgery, there may be structures in image A that are absent from image B.

4. Image distortion

4.1. Geometric distortion

It is important to realize that even when the object being imaged two or more times is rigid,
there may be distortions in the imaging process that mean that the correct transformation
between the coordinate spaces �A of image A and �B of image B requires additional degrees
of freedom. There are many different causes of geometrical distortion in radiological imaging.
The types of distortion in images is dependent on the underlying physics of the acquisition, so
will vary between the different modalities. It is theoretically possible to correct geometrical
distortion. In practice, however, it may be difficult to get the information needed to do this
routinely.

The simplest forms of geometric distortion result in scaling and skewing of the coordinate
space, and can therefore be described using an affine transformation. Scaling distortion can
arise as a result of miscalibration of the voxel dimensions of the images being registered. Skew
distortion is most common in CT images, where a tilted gantry rotates the image plane with
respect to the axis of the bed, introducing a skew into the images. The gantry tilt angle may
not be accurately known, so the skew error, like the scaling error, could be an unknown degree
of freedom in the registration transformation T .

Pin-cushion and barrel distortion lead to a smoothly varying geometrical distortion across
the field of view of the images, which is largest at the periphery.

Magnetic resonance images are especially liable to distortion. If the gradients are mis-
calibrated, then the voxel dimensions will be incorrect, and a scaling error will be present in the
data. This can be corrected using phantom measurements (e.g. Hill et al 1998, Lemieux and
Barker 1998). If the static magnetic field B0 is not uniform over the subject, then the magnetic
field gradients applied during imaging will not result in a linear variation in resonant frequency
with position, leading to distortion. The main field inhomogeneity is dependent on the object
being imaged, and in particular on local susceptibility changes. The spatial error due to this
inhomogeneity is dependent on the field inhomogeneity as a proportion of the imaging gradient
strength. The distortion is reduced by increasing the gradient strength, which is equivalent to
increasing the bandwidth per pixel. For conventional spin-warp MR imaging (2D multislice
or 3D), this distortion is greatest in the read-out direction, and absent in the phase-encode
direction(s) where the bandwidth per pixel is essentially infinite because the lines are acquired
from different excitations (Chang and Fitzpatrick 1992, Sumanaweera et al 1994). For echo
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planar imaging, the bandwidth per pixel is lowest in the phase encode (or blip) direction, so the
distortion is highest in that direction (Jezzard and Balaban 1995). For two-dimensional images,
the field inhomogeneity results in the excitation of slices that are curved rather than planar. The
magnet-dependent inhomogeneity can be measured with a phantom experiment, but to correct
for the object-dependent field inhomogeneity it is necessary to make additional measurements
during imaging. For spin-echo images, this can be done by making two measurements with
different readout gradient strengths (or opposite gradient directions) (Chang and Fitzpatrick
1992). For gradient echo images (Sumanaweera et al 1994) and echo planar images (Jezzard
and Balaban 1995), distortion can be inferred from a map of field inhomogeneity.

Patient motion during either CT or multislice MR imaging can result in a variation in slice
orientation relative to the patient across the scan. This is currently an unsolved problem, and
makes registration of such datasets very difficult. In the rigid body case, there is a different
transformation needed for each slice (or in some MR images, groups of slice interleaves), and
this transform is hard to find.

Motion during MR imaging within the acquisition of a single slice or an entire 3D volume
results in a different problem, namely ghost artefacts. This can result in one or more ‘ghosts’
of the object appearing in the image along with the main image of the object. These ghosts
normally have higher spatial frequency content than the main image, but there is a different
registration transformation needed for each ghost. Just as the geometric distortion described
above can be corrected, these ghost artefacts can be removed (e.g. Atkinson et al 1999, McGee
et al 2000) but this is not routinely performed.

With emission tomography (PET and SPECT), an important cause of distortion errors can
be poor alignment of the detector heads in multidetector systems, or uncertainty in the centre of
rotation. These lead to a halo artefact that distorts the true distribution. Also, in PET imaging
it is important to calibrate the voxel dimensions, as some reconstruction algorithms assume
that all photons are detected at the face of the scintillator crystals, but the mean free path of
photons in these materials can be 1 cm or so, giving scaling errors in the data.

4.2. Intensity distortion

In addition to the geometric distortion described above, intensity distortion is common in
images. This results in the same tissue in different places appearing in the image with varying
intensity. Since the intensity distortion is likely to be different between images (even images
of the same modality acquired at different times), this effect results in the intensity mapping
F being non-stationary (i.e. changing over the image). The effect is common in MR imaging,
where the shading is caused primarily by inhomogeneity in the RF (or B1) field, and is also
present in radiographs, where the heel effect results in a slow variation in intensity across the
image. The MR intensity distortion can sometimes be corrected if appropriate assumptions
are made about the image (e.g. Guillemaud and Brady 1997, Sled et al 1998).

5. Rigid body registration algorithms using geometric features

In this section we describe registration algorithms that determine T using image features that
have been extracted from the images either interactively or automatically. The most widely
used of these features in this application are points and surfaces, though crest lines and extremal
points identified using differential geometric operators are also used. An alternative approach
to registration using geometrical features is to generate derived images from A and B that
represent the strength of a feature (such as a ridge) at each voxel and then to register these
derived images using a voxel similarity measure. Such approaches are described in section 7.1.
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5.1. Points and the Procrustes problem

Point-based registration involves identifying corresponding three-dimensional points in the
images to be aligned, registering the points and inferring the image transformation from
the transformation determined from the points. Using the notation introduced in section 2,
we want to find points {xi

A}i=1...N in image A and {xi
B}i=1...N in image B corresponding

to the set of features {xi}i=1...N in the object, and find the transformation that aligns
them in a least square sense. The corresponding points are sometimes called homologous
landmarks to emphasize that they should represent the same feature in the different
images.

5.1.1. The orthogonal Procrustes problem. The orthogonal Procrustes problem draws its
name from the Procrustes area of statistics. Procrustes was a robber in Greek mythology. He
would offer travellers hospitality in his road-side house, and the opportunity to stay the night
in his bed that would perfectly fit each visitor. As the visitors discovered to their cost, however,
it was the guest who was altered to fit the bed, rather than the bed that was altered to fit the
guest. Short visitors were stretched to fit, and tall visitors had suitable parts of their body cut
off so they would fit. The result, it seems, was invariably fatal. The hero Theseus put a stop to
this unpleasant practice by subjecting Procrustes to his own method.

The term ‘Procrustes’ became a criticism for the practice of unjustifiably forcing data
to look like they fit another set. More recently, Procrustes statistics has lost its negative
associations and is used in shape analysis. The mathematical problem has relevance in many
domains including statistics (Green 1952, Hurley and Cattell 1962, Koschat and Swayne 1991,
Schönemann 1966, Rao 1980), gene recognition (Gelfand et al 1996), satellite positioning and
robotics (Kanatani 1994, Umeyama 1991) in addition to its interest in numerical mathematics
as a least square problem (Golub and van Loan 1996, Edelman et al 1998, Söderkvist 1993,
Stewart 1993). The Procrustes problem is an optimal fitting problem, of least square type:
given two configurations of N non-coplanar points P = {pi} and Q = {qi}, one seeks the
transformation T which minimizes G(T ) = ||T (P )−Q||2. The notation is: P , Q are the N -
by-D matrices whose rows are the coordinates of the points pi , qi , T (P ) is the corresponding
matrix of transformed points, and || . . . || is a matrix norm, the simplest being the Frobenius
= (

∑
i ‖(T (pi ) − qi )

2‖)1/2. The standard case is when T is a rigid body transformation
(Dryden and Mardia 1998, Fitzpatrick et al 1998b). One can additionally consider scaling
(Dryden and Mardia 1998). If T is affine, we are faced with a standard least square (Golub
and van Loan 1996).

5.1.2. Solutions. The classical Procrustes problem, i.e. T ∈ {rigid body transformations}
has known solutions. A matrix representation of the rotational part can be computed using
singular-value decomposition (SVD) (Dryden and Mardia 1998, Golub and van Loan 1996,
Kanatani 1994, Schönemann 1966, Umeyama 1991).

First replace P and Q by their demeaned versions, as the optimal transformation is from
centroid to centroid

pi 	→ pi − p̄

qi 	→ qi − q̄

This reduces the problem to the orthogonal Procrustes problem in which we wish to
determine the orthogonal rotation R. Central to the problem is the D-by-D correlation matrix
K := P tQ, as this matrix quantifies how much the points in Q are ‘predicted’ by points in
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P . If P = [pt
1, . . . ,p

t
N ]t is a matrix of row vectors (and the same for Q), K = ∑

i Ki where
Ki := piq

t
i , then

K = UDV t ⇒ R = V �U t � := diag(1, 1, det(VUt))

where K = UDV t is the SVD of K.
It is essential for most medical registration applications that R does not include any

reflections. This can be detected from the determinant of V U t , which should be +1 for a
rotation with no reflection, and will be −1 if there is a reflection. In the above equation, �
takes this into account.

Finally the translation t is given by t = q̄ − Rp̄.
This approach has been widely used in medical image registration, first for multimodality

registration (e.g. Evans et al 1988, Hill et al 1991) and more recently in image-guided surgery
(e.g. Maurer et al 1997). The points can either be anatomical features that can be identified in
3D, or markers attached to the patient. The theory of errors has been advanced in the medical
application domain through the work of Fitzpatrick et al (1998b).

5.2. Surface matching

Boundaries, or surfaces, in medical images tend to be more distinct than landmarks, and
various segmentation algorithms can successfully locate such high-contrast surfaces. This
is especially true of the skin surface—the boundary between tissue and air—which is high
contrast in most imaging modalities, with the important exceptions of certain tracers in nuclear
medicine emission tomography and some echo planar MR images. If equivalent surfaces can
be automatically segmented from two images to be combined, then rigid body registration can
be achieved by fitting the surfaces together. The surface matching algorithms described below
are normally only used for rigid body registration.

5.2.1. The head-and-hat algorithm. Pelizzari and colleagues (Pelizzari et al 1989, Levin et al
1988) proposed a surface fitting technique for intermodality registration of images of the head
that became known as the ‘head-and-hat’ algorithm. Two equivalent surfaces are identified in
the images. The first, from the higher-resolution modality, is represented as a stack of discs,
and is referred to as the head. The second surface is represented as a list of unconnected 3D
points. The registration transformation is determined by iteratively transforming the (rigid)
hat surface with respect to the head surface, until the closest fit of the hat onto the head is
found. The measure of closeness of fit used is the square of the distance between a point on the
hat and the nearest point on the head, in the direction of the centroid of the head. The iterative
optimization technique used is the Powell method (Press et al 1992). The Powell optimization
algorithm performs a succession of one-dimensional optimizations, finding in turn the best
solution along each of the six degrees of freedom, and then returning to the first degree of
freedom. The algorithm stops when it is unable to find a new solution with a significantly
lower cost (as defined by a tolerance factor) than the current best solution. This algorithm has
been used with considerable success for registering images of the head (Levin et al 1988), and
has also been applied to the heart (Faber et al 1991). The surfaces most commonly used are
the skin surface delineated from both MR images and PET transmission images, or the brain
surface delineated from both MR images and PET emission images. The measure of goodness
of fit can be prone to error for convoluted surfaces: the distance metric used by the head-and-
hat algorithm does not always measure the distance between a hat point and the closest point
on the head surface, because the nearest head point will not always lie in the direction of the
head centroid, especially if the surface is convoluted.
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5.2.2. Distance transforms. A modification to the head-and-hat algorithm is to use a distance
transform to preprocess the head images. A distance transform is applied to a binary image
in which object pixels (or voxels) have the value 1 and other voxels have the value 0. It labels
all voxels in this image with their distance from the surface of the object. By prelabelling
all image voxels in this way, the cost per iteration can be substantially reduced (potentially
to a single address manipulation and accumulation for each transformed hat surface point).
A widely used distance transform is the chamfer filter proposed by Borgefors (1984). This
approach was used for rigid body medical image registration (e.g. Jiang et al 1992, van den
Elsen 1992, van Herk and Kooy 1994). More recently, exact Euclidean distance transforms
have been used in place of the chamfer transform (Huang and Mitchell 1994).

Given estimates for the six degrees of freedom of the rigid body transformation, the hat
points are transformed and their distances from the head surface are calculated from the values
in the relevant voxels in the distance transform. These values are squared and summed to
calculate the cost associated with the current transformation estimate. There remains a risk of
finding local minima, so a pyramidal multiscale representation and outlier rejection is desirable
(Jiang et al 1992).

5.2.3. Iterative closest point. The iterative closest point algorithm (ICP) was proposed by Besl
and McKay (1992) for the registration of 3D shapes. It was not designed with medical images
in mind, but has subsequently been applied to medical images with considerable success,
and is now probably the most widely used surface matching algorithm in medical imaging
applications (e.g. Cuchet et al 1995, Declerck et al 1997, Maurer et al 1998). The original
article is written in terms of registration of collected data to a model. The collected data, P ,
could come from any sensor that provides three-dimensional surface information including
laser scanners, stereo video and so forth. The model data, X , could come from a computer-
aided design model. In medical imaging applications, both sets of surface data might be
delineated from radiological images, or the model might be derived from a radiological image
and the data from stereo video acquired during an operation. The algorithm is designed to work
with seven different representations of surface data: point sets, line segment sets (polylines),
implicit curves, parametric curves, triangle sets, implicit surfaces and parametric surfaces. For
medical image registration the most relevant representations are likely to be point sets and
triangle sets, as algorithms for delineating these from medical images are widely available.

The algorithm has two stages and iterates. The first stage involves identifying the closest
model point for each data point, and the second stage involves finding the least square rigid
body transformation relating these points sets. The algorithm then redetermines the closest
point set and continues until it finds the local minimum match between the two surfaces, as
determined by some tolerance threshold.

Whatever the original representation of the data surface P , it is first converted to a set of
points {pi}. The model data remain in their original representation. The first stage involves
identifying, for each point pi on the data surface P , the closest point on the model surface X .
This is the point x in X for which the distance d between pi and x is minimum

d(pi ,X ) = min
x∈X

||x − pi ||.
The resulting set of closest points (one for each pi) is {qi}. For a triangulated surface, which
is the most likely model representation from medical image data, the model X comprises a set
of triangles {ti}. The closest model point to each data point is found by linearly interpolating
across the facets. If triangle ti has vertices r1, r2 and r3, then the distance between the point
pi and the triangle ti is

d(pi , ti ) = min
u+v+w=1

||ur1 + vr2 + wr3 − pi ||



Medical image registration R15

where u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1]. The closest model point to the data point pi is,
therefore, qi = (ur1, vr2, wr3).

A least squares registration between the points {pi} and {qi} can then be carried out using
the method described in section 5.13. The set of data points {pi} is then transformed to {p′

i}
using the calculated rigid body transformation, and then the closest points once again identified.
The algorithm terminates when the change in mean square error between iterations falls below
a threshold.

The optimization can be accelerated by keeping track of the solutions at each iteration.
If there is good alignment between the solutions (to within some tolerance), then both a parabola
and a straight line are fitted through the solutions, and the registration estimate is updated using
one or the other of these estimates based on a slightly ad hoc method to ‘be on the safe side’.

As the algorithm iterates to the local minimum closest to the starting position, it may not
find the correct match. The solution proposed by Besl and McKay is to start the algorithm
multiple times, each with a different estimates of the rotation alignment, and choose the
minimum of the minima obtained.

5.3. Registration using crest lines

An alternative to the idea of using surface matching for registration is to use distinctive features
on those surfaces instead. For this to work the surfaces must be smooth, that is possible to
differentiate up to third order. Using the tools of differential geometry, it is possible to define
two principal curvatures k1 and k2 at each point on a surface, (the strength of k1 is greater than
k2) with associated principal directions. Crest lines are the loci of the surface where the value
k1 is locally maximal in its principal direction (Monga and Benayoun 1995). For medical
images in which intensity threshold values can determine isosurfaces that delineate structures
of interest (e.g. bone from CT scans), these crest lines can be identified directly from the
image voxel arrays. For other applications, such as registration involving MRI where intensity
shading makes isosurfaces less meaningful, prior surface segmentation is needed. In both cases,
smoothing of the data is needed along with differentiation in order to reduce sensitivity to noise.

Images can be registered by aligning the crest lines identified in the images. This has
greatest applicability when the images are very similar, in which case there will be good
correspondence between crest lines (Gueziec and Ayache 1994, Pennec and Thirion 1997).
Alternative approaches include using hash tables of geometrical invariants for each curve
(Gueziec et al 1997) together with the Hough transform, and using a modification of the iterative
closest point algorithm described above (Gueziec and Ayache 1994, Pennec and Thirion 1997).
The technique has been applied to registration of CT skull images and T1-weighted MR image
volumes.

6. Intramodality registration using voxel similarity measures

Registration using voxel similarity measures involves calculating the registration
transformation T by optimizing some measure calculated directly from the voxel values (or
pixel values) in the images rather than from geometrical structures such as points or surfaces
derived from the images. As was stated in section 2, with voxel similarity measures we
are almost invariably iteratively determining T , whereas in the case of point registration or
surface matching we first identify corresponding features, determine T directly or iteratively
from these, and finally infer T .

3 The authors of the iterative closest point algorithm in fact use the equivalent quaternion method.
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In sections 5.1 and 5.2 above we did not distinguish between registration where images
A and B are of the same modality and registration of A and B when they are of different
modalities. For registration using voxel similarity measures this is an important distinction, as
will be seen from the following example. A common reason for carrying out same modality, or
intramodality, registration is to compare images from a subject taken at slightly different times
in order to ascertain whether there have been any subtle changes in anatomy or pathology.
If there has been no change in the subject, we might expect that, after registration and
subtraction, there will be no structure in the difference image, just noise. Where there is a small
amount of change in the structure, we would expect to see noise in most places in the images,
with a few regions visible in which there has been some change. If there were a registration
error, we would expect to see artefactual structure in the difference image resulting from the
poor alignment. In this application, various voxel similarity measures suggest themselves. We
could, for example, iteratively calculate T while minimizing the structure in the difference
image on the grounds that at correct registration there will be either no structure or a very
small amount of structure in the difference image, whereas with increasing misregistration,
the amount of structure would increase. The structure could be quantified, for example, by the
sum of squares of difference values, or the sum of absolute difference values, or the entropy of
the difference image. An alternative intuitive approach (at least for those familiar with signal
processing techniques) would be to find T by cross correlation of images A and B. In this
section, we describe these intramodality techniques in more detail.

6.1. Minimizing intensity difference

One of the simplest voxel similarity measures is the sum of squared intensity differences
between images, SSD, which is minimized during registration. For N voxels in the overlap
domain �T

A,B

SSD = 1

N

∑
xA∈�T

A,B

|A(xA) − BT (xA)|2. (5)

It is necessary to divide by the number of voxels N in the overlap domain (the cardinality
of �T

A,B) because N = ∑
�T

A,B
1 may vary with each estimate of T . It can be shown that this is

the optimum measure when two images only differ by Gaussian noise (Viola 1995). It is quite
obvious that for intermodality registration this will never be the case. This strict requirement
is seldom true in intramodality registration either, as noise in medical images such as modulus
MRI scans is frequently not Gaussian, and also because there is likely to have been change in
the object being imaged between acquisitions or there would be little purpose in registering
the images!

The SSD measure is widely used for serial MR registration, for example by Hajnal et al
(1995a, b). It is also used in a slightly different framework by the registration algorithm within
Friston’s statistical parametric mapping (SPM) software (Friston et al 1995, Ashburner and
Friston 1999), as described in more detail in section 7.1 below.

The SSD measure is very sensitive to a small number of voxels that have very large
intensity differences between images A and B. This might arise, for example, if contrast
material is injected into the patient between the acquisition of images A and B or if the images
are acquired during an intervention and instruments are in different positions relative to the
subject in the two acquisitions. The effect of these ‘outlier’ voxels can be reduced by using
the sum of absolute differences, SAD rather than SSD:

SAD = 1

N

∑
xA∈�T

A,B

|A(xA) − BT (xA)|. (6)
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6.2. Correlation techniques

The SSD measure makes the implicit assumption that after registration, the images differ only
by Gaussian noise. A slightly less strict assumption would be that, at registration, there is
a linear relationship between the intensity values in the images. In this case, the optimum
similarity measures is the correlation coefficient, CC

CC =
∑

xA∈�T
A,B

(A(xA) − Ā)(BT (xA) − B̄)

{∑xA∈�T
A,B

(A(xA) − Ā)2
∑

xA∈�T
A,B

(BT (xA) − B̄)2}1/2
. (7)

where Ā is the mean voxel value in image A|�T
A,B

and B̄ is the mean of BT |�T
A,B

. This similarity
measure has been used for intramodality registration (e.g. Lemieux et al 1998). The correlation
coefficient can be thought of as a normalized version of the widely used cross correlation
measure C

C =
∑

xA∈�T
A,B

A(xA)B
T (xA). (8)

6.3. Ratio image uniformity

The ratio image uniformity (RIU) algorithm was originally introduced by Woods et al (1992)
for the registration of serial PET studies, but has more recently been widely used for serial
MR registration (Woods et al 1998), and is available in the AIR registration package from
UCLA. The algorithm can be thought of as working with a derived ratio image calculated from
images A and B. An iterative technique is used to find the transformation T that maximizes
the uniformity of this ratio image, which is quantified as the normalized standard deviation of
the voxels in the ratio image. The RIU acronym was not introduced when the algorithm was
first published, and it is also frequently referred to as the variance of intensity ratios (VIR)
algorithm. The RIU algorithm is most easily thought of in terms of an intermediate ratio image
R comprising N voxels within �T

A,B (N = ∑
�T

A,B
1)

R(xA) =
A|�T

A,B
(xA)

BT |�T
A,B

(xA)
R̄ = 1

N

∑
xA∈�T

A,B

R(xA) (9)

RIU =
√

1
N

∑
xA∈�T

A,B
(R(xA) − R̄)2

R̄
. (10)

7. Intermodality registration using voxel similarity measures

In section 6 we described algorithms that register images of the same modality by optimizing
a voxel similarity measure. Because of the similarity of the intensities in the images being
registered, the subtraction, correlation and ratio techniques described have an intuitive basis.
With intermodality registration, the situation is quite different. There is, in general, no simple
relationship between the intensities in the images A and B. Using the notation of section 2,
the intensity mapping function F is a complicated function and no simple arithmetic operation
on the voxel values is, therefore, going to produce a single derived image from which we can
quantify misregistration.

In section 7.1 we describe some interesting approaches to applying the intramodality
measures of subtraction and correlation to images of different modalities. In the remainder of
this section we then describe similarity measures designed to work directly on intermodality
images.
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In theory these measures could be used to calculate an arbitrary mapping T . In practice,
current intermodality registration techniques almost always involve finding rigid body or affine
transformations.

7.1. Using intramodality similarity measures for intermodality registration

It is possible to use image subtraction or correlation techniques for intermodality registration
by estimating an intensity mapping function F and applying this to one image (say A) to
create a ‘virtual image’ Av that has similar intensity characteristics to image B, of a different
modality. If the estimate of F is reasonably good, then the virtual image Av is sufficiently
similar to image B that subtraction or correlation algorithms can be used for registration.

7.1.1. Intensity re-mapping for MR–CT registration. One approach, which works well in
MR–CT registration, is to transform the CT image intensities, such that high intensities are
re-mapped to low intensities. This creates a virtual image from the CT images that has an
intensity distribution more like an MR images (in which bone is dark) (van den Elsen et al
1994). The MR image and virtual MR image created from CT are then registered by cross
correlation.

7.1.2. Registration of intensity ridges. A slightly different approach is to generate virtual
images Av and Bv from A and B, such that, although A and B are very different from each
other, Av and Bv are quite similar. This can be done by applying scale-space derivatives to
both images A and B in order to generate virtual images that comprise intensity ridges (van
den Elsen et al 1995, Maintz et al 1996). The operator used by these authors to quantify
‘ridgeness’ in images is Lvv . In their terminology L is the intensity distribution (either 3D or
2D) and a gradient-based local coordinate system is then defined in which w is the direction of
maximum gradient and v is the normal to that direction. The direction v will change relative
to the Cartesian axis of the image depending on the local intensity landscape. Lvv is therefore
the second derivative of the intensity landscape at a local position and a selected scale. It is a
line in 2D and a surface in 3D (Maintz et al 1996). Applying this operator to both images to be
registered produces two derived images of ridgeness that can be registered by cross correlation.

7.1.3. The registration algorithm used by the statistical parametric mapping (SPM)
software. Registration involves finding the optimal transformation T . In order to run
optimization algorithms, these transformation are assumed to be parametrized, for example
the rotations are typically parametrized by Euler angles. We call the collection of parameters
θ = (θ0, . . . , θK−1), and we indicate the parametrization using the notation T = Tθ . For non-
rigid transformations, the number of parameters K can be very large. In this sense, a general
similarity measure SA,B(T ) becomes a function of these parameters θ : SA,B(θ).

Friston et al (1995) proposed an alternative to running some optimization algorithm on
a similarity measure. In the section on similarity measures, it was mentioned that different
relationships between the image intensities are possible. At registration, the intensity mapping
could be the identity, i.e. B(T (xA)) = A(xA) + ε(xA). Alternatively the mapping could be
linear, in which case BT (xA) = αA(xA) + β + ε(xA). More generally, we could have some
global functional relation BT (xA) = F(A(xA)) + ε(xA) or local functional (non-stationary)
relationship: BT (xA) = F(A(xA),xA) + ε(xA). In all these equations, ε(xA) is some error
term, which is discarded. Friston et al note that this provides one equation for every xA. Just as
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the transformation can be parametrized, they assume that the unknown F can be parametrized
too, say by u = (u0, . . . , uL−1), with L parameters. If we rewrite the N equations in the form

-xA
(θ,u) = BTθ (xA) − Fu(A(xA),xA) = 0 (11)

we get N implicit equations in K +L unknowns. If N � K +L such a system can be formally
solved. This is a very general approach, and Friston et al propose various specific versions for
different applications. The general approach is analogous to the sum of squares of difference
(SSD) algorithm described in section 6.1, in which registration is accomplished by minimizing
the sum of squares of differences in voxel intensities between a virtual image derived from
image A and the corresponding locations in image B

SSD = ||F(A(xA)) − BT (xA)||2. (12)

The assumptions in Friston et al’s algorithm, however, mean that their solution is likely to be
different from the solution obtained by iteratively minimizing SSD.

In order to be able to solve explicitly equation (11), Friston et al make a series of
assumptions, which actually have the effect of ensuring that K and L are not too big. If - is
smooth, and we know that the solution is close to our starting estimate θ0, u0, equation (11) can
be linearized by taking the first two terms of the Taylor expansion of -, in order to compute
an explicit equation: -xA

(θ,u) = -xA
(θ0,u0) + [∂θ-xA

(θ0,u0), ∂u-xA
(θ0,u0)][θ,u]t .

If we call A the matrix of partial derivatives, then equation (11) takes the simple form
A[θ,u]t = −-xA

(θ0,u0)which can be solved by standard least square techniques. This is not
iterative, but obviously, due to the assumptions which have been made, iterative improvement
might be required. Good starting estimates are essential for this technique.

7.1.4. Example: MR–PET registration. Here A = MR, B = PET. Friston et al’s
choice was: T is a rigid body transformations, and the parametrization of F(MR(xMR),xMR)

was obtained under the following assumptions: the signal from many PET images comes
predominantly from grey matter, so a segmentation of the grey matter in MR should give an
approximation to a virtual PET image (Friston et al 1995). This image might still have a
non-stationary scaling, which is called u0(xMR). This segmented and scaled MR still has the
wrong resolution, which is corrected by low-pass filtering by convolution with a Gaussian
kernel. If vg is the estimated intensity, the segmentation is done by the transformation
F(MR(xMR),xMR) = u0(xMR)e−(MR(xMR)−vg)

2/2σ 2
. The real grey-value intensity is going

to vary, so vg is replaced by vg + v(xMR). The parameters of (we don’t write the argument for
clarity) F(MR(·), ·) = u0(·)e−(MR(·)−(vg+v(·)))2/2σ 2

are then u0 and v. Friston et al make the
parameter transformation u1 = u0v and assumes smooth variation over the image to ensure
the system is overdetermined.

7.2. Partitioned intensity uniformity

The first widely used intermodality registration algorithm that used a voxel similarity measure
was proposed by Woods and colleagues for MR-PET registration soon after they proposed
their RIU algorithm (Woods et al 1993). Here, we refer to this intermodality algorithm as
partitioned intensity uniformity (PIU). This algorithm involved a fairly minor change to the
source code of their previously published RIU technique (see section 6.3), but transformed its
functionality. This algorithm makes an idealized assumption that ‘all pixels with a particular
MR pixel value represent the same tissue type so that values of corresponding PET pixels
should also be similar to each other’. The algorithm therefore partitions the MR image into
256 separate bins based on the value of the MR voxels, then seeks to maximize the uniformity
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of the PET voxel values within each bin. Once again, uniformity within each bin is maximized
by minimizing the normalized standard deviation.

It is possible to consider this algorithm also using the concept of ratio images, as in the
intramodality RIU algorithm. In the intermodality case, however, instead of generating a single
ratio image, one ‘ratio image’ is generated for each of the MR intensity bins. This produces
256 sparse images, one for each isointensity set �a . No explicit division is needed to generate
these ‘ratio images’, however, because the denominator image corresponds to a single MR bin.
The normalized standard deviation of each of these sparse ‘ratio images’ is then calculated,
and the overall similarity measure calculated from a weighted sum of the normalized standard
deviations.

In the discussion above, we have described the algorithm in terms of MR and PET
registration only. We can now formulate the algorithm more generally in terms of images
A and B. It is important to note that the two images are treated differently, so there are two
different versions of the algorithm, depending on whether image A or image B is partitioned.

For registration of the images A and B, the partitioned image uniformity measure (PIU)
can be calculated in two ways. Either as the sum of the normalized standard deviation of
intensities inB for each intensity a inA (PIUB) or the sum of the normalized standard deviation
of intensities in A for each intensity b in B (PIUA)

PIUB =
∑
a

na

N

σB(a)

µB(a)
and PIUA =

∑
b

nb

N

σA(b)

µA(b)
(13)

where

na =
∑
�T

a

1 nb =
∑
�T

b

1

µB(a) = 1

na

∑
�T

a

BT (xA) µA(b) = 1

nb

∑
�T

b

A(xA)

σ 2
B(a) = 1

na

∑
�T

a

(BT (xA) − µB(a))
2 σ 2

A(b) = 1

nb

∑
�T

b

(A(xA) − µA(b))
2.

In words, we can say that na is the number of voxels of the isointensity set a in A|�T
A,B

, and

µB(a) and σB(a) are the mean and standard deviation values of the voxels in BT |�T
A,B

that co-
occur with this set. The PIU algorithm is widely used for MR–PET registration, requiring that
the scalp is first removed from the MR image to avoid a breakdown of the idealized assumption
described above. The technique has never been widely used for registration of other modalities,
but its success has inspired considerable research activity aimed at identifying alternative voxel
similarity measures for intermodality registration.

7.3. Information theoretic techniques

It can be useful to think of image registration as trying to maximize the amount of shared
information in two images. In a very qualitative sense, we might say that if two images of
the head are correctly aligned then corresponding structures will overlap, so we will have two
ears, two eyes, one nose and so forth. When the images are out of alignment, however, we
will have duplicate versions of these structures from A and B.

Using this concept, registration can be thought of as reducing the amount of information
in the combined image, which suggests the use of a measure of information as a registration
metric. The most commonly used measure of information in signal and image processing is the
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Shannon–Wiener entropy measure H , originally developed as part of communication theory
in the 1940s (Shannon 1948, 1949)

H = −
∑
i

pi logpi. (14)

H is the average information supplied by a set of n symbols whose probabilities are given by
p1, p2, p3, . . . pn.

This formula, save for a multiplicative constant, is derived from three conditions that a
measure of choice or uncertainty in a communication channel should satisfy. These are:

(a) The functional should be continuous in pi .
(b) If all pi equal 1

n
, where n is the number of symbols, then H should be monotonically

increasing in n.
(c) If a choice is broken down into a sequence of choices then the original value of H should

be the weighted sum of the constituent H . That is H(p1, p2, p3) = H(p1, p2 + p3)

+(p2 + p3)H(
p2

p2+p3

p3

p2+p3
).

Shannon proved that the − ∑
pi logpi form was the only functional form satisfying all three

conditions.
Entropy will have a maximum value if all symbols have equal probability of occurring

(i.e. pi = 1
n
∀i), and have a minimum value of zero if the probability of one symbol occurring

is 1, and the probability of all the others occurring is zero.
An important observation made by Shannon is that any change in the data that tends to

equalize the probabilities of the symbols {p1, p2, p3, . . . pn} increases the entropy. Blurring
the symbols is one such operation. For a single image, the entropy is normally calculated from
the image intensity histogram in which the probabilities p1 . . . pn are the histogram entries4.
If all voxels in an image have the same intensity a, the histogram contains a single non-zero
element with probability of 1, indicating that A(xA) = a for all xA. The entropy of this
image is −1 log 1 = 0. If this uniform image were to include some noise, then the histogram
will contain a cluster of non-zero entries around a peak at the average (mode) intensity value,
which will be approximately a. The addition of noise to the image, therefore, tends to equalize
the probabilities by ‘blurring’ the histogram which increases the entropy. The dependence
of entropy on noise is important. One consequence is that interpolation of an image may
smooth the image (see section 9 for more detail) which can reduce the noise, and consequently
‘sharpen’ the histogram. This sharpening of the histograms reduces entropy.

An application of entropy for intramodality image registration is to calculate the entropy
of a difference image. If two identical images, perfectly aligned, are subtracted the result
is an entirely uniform image that has zero entropy (as stated above). For two images that
differ by noise, the histogram will be ‘blurred’, giving higher entropy. Any misregistration,
however, will lead to edge artefacts that further increase the entropy. Very similar images can,
therefore, be registered by iteratively minimizing the entropy of the difference image (Buzug
and Weese 1998).

7.3.1. Joint entropy. In image registration we have two imagesA andB to align. We therefore
have two values at each voxel location for any estimate of the transformation T . Joint entropy
measures the amount of information we have in the two images combined (Shannon 1948).

4 In some applications, image entropy is calculated by treating the value of each pixel or voxel xA ∈ �A as a
probability, so entropy is given by

∑
xA∈�A

A(xA) logA(xA), with suitable normalization such that all probabilities
sum to 1. In this article, we consider entropy calculated from the histogram of the image, not directly from the voxels
in the image.
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If A and B are totally unrelated, then the joint entropy will be the sum of the entropies of the
individual images. The more similar (i.e. less independent) the images are, the lower the joint
entropy compared with the sum of the individual entropies

H(A,B) � H(A) + H(B). (15)

The concept of joint entropy can be visualized using a joint histogram calculated from
image A and BT (Hill et al 1994). For all voxels in the overlapping regions of the images
(xA ∈ �T

A,B), we plot the intensity of this voxel in image A, A(xA) against the intensity of the
corresponding voxel in image BT . The joint histogram can be normalized by dividing by the
total number of voxels N in �T

A,B , and regarded as a joint probability density function (PDF)
pT
AB of images A and B. We use the superscript T to emphasize that pT

AB changes with T .
Due to the quantization of image intensity values, the PDF is discrete, and the values in each
element represent the probability of pairs of image values occurring together. The joint entropy
H(A,B) is therefore given by

H(A,B) = −
∑
a

∑
b

pT
AB(a, b) logpT

AB(a, b). (16)

The number of elements in the PDF can either be determined by the range of intensity
values in the two images, or from a partitioning of the intensity space into ‘bins’. For example
MR and CT images being registered could have up to 4096 (12 bits) intensity values, leading
to a very sparse PDF with 4096 by 4096 elements. The use of between 64 and 256 bins is more
common. In the above equation a and b either represent the original image intensities or the
selected intensity bins. Joint entropy was simultaneously proposed for intermodality image
registration by Studholme et al (1995) and Collignon et al (1995) at the 1995 Information
Processing in Medical Imaging Conference.

As can be seen from figure 2, the joint histograms disperse or ‘blur’ with increasing
misregistration such that the brightest regions of the histogram gets less bright, and the
number of dark regions is reduced. This arises because misregistration leads to joint histogram
entries that correspond to different tissue types in the two images. This increases the entropy.
Conversely, when registering images we want to find a transformation that will produce a small
number of histogram elements with high probabilities, and give us as many zero-probability
elements in the histogram as possible, which will minimize the joint entropy. Registration can,
therefore, be thought of as trying to find the transformation that maximizes the ‘sharpness’ of
the histogram, thereby minimizing the joint entropy.

The simple form of the equation for joint entropy (equation (16)) can hide an important
limitation of this measure. As we have emphasized with the T superscript on the joint
probabilities, joint entropy is dependent on T . In particular, pT

AB is very dependent on the
overlap �T

A,B , which is undesirable. For example, a change in T may alter the amount of air
surrounding the patient overlapping in the images A and B. Since the air region contains noise
that will tend to occupy the lowest value intensity bins (e.g. a = 0, b = 0), changing this
overlap will alter the joint probability pT

AB(0, 0). If the overlap of air increases, pT
AB(0, 0) will

increase, reducing the joint entropy H(A,B). If the overlap of air decreases, pT
AB(0, 0) will

reduce, increasing H(A,B). A registration algorithm that seeks to minimize joint entropy
will tend, therefore, to maximize the amount of air in �T

A,B , which may result in an incorrect
solution. More subtly, interpolation which is needed for both subvoxel translation and any
rotation will blur the image, altering the PDF values pT

AB .

7.3.2. Mutual information. A solution to the overlap problem from which joint entropy
suffers is to consider the information contributed to the overlapping volume by each image
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Figure 2. Example 2D histograms from Hill et al (1994) (with permission) for (a) identical MR
images of the head, (b) MR and CT images of the head and (c) MR and PET images of the head.
For all modality combinations, the left panel is generated from the images when aligned, the middle
panel when translated by 2 mm, and the right panel when translated by 5 mm. Note that while the
histograms are quite different for the different modality combinations, misregistration results in a
dispersion or blurring of the signal. Although these histograms are generated by lateral translational
misregistration, misregistration in other translation or rotation directions has a similar effect.

being registered together with the joint information. The information contributed by the
individual images is simply the entropy of the portion of the image that overlaps with the other
image volume:

H(A) = −
∑
a

pT
A(a) logpT

A(a) ∀A(xA) = a|xA ∈ �T
A,B (17)
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H(B) = −
∑
b

pT
B (b) logpT

B (b) ∀BT (xA) = b|xA ∈ �T
A,B (18)

where pT
A and pT

B are the marginal probability distributions, which can be thought of as the
projection of the joint PDF onto the axes corresponding to intensities in image A and B

respectively. It is important to remember that the marginal entropies are not constant during
the registration process. Although the information content of the images being registered
is constant (subject to slight changes caused by interpolation during transformation), the
information content of the portion of each image that overlaps with the other image will
change with each change in estimated registration transformation. The superscript T in pT

B

once again emphasizes the dependence of the probabilities on T . The probabilities pT
A have

a superscript T rather than T because image A is the target image which is not interpolated
during registration, but the overlap domain nevertheless changes with T .

Communication theory provides a technique for measuring the joint entropy with respect
to the marginal entropies. This measure, introduced by Shannon (1948) as ‘rate of transmission
of information’ in his article that founded information theory, has become known as mutual
information I (A,B). It was independently and simultaneously proposed for intermodality
medical image registration by researchers in Leuven, Belgium (Collignon et al 1995, Maes
et al 1997) and MIT in the USA (Viola 1995, Wells et al 1996). In maximizing mutual
information, we seek for solutions that have a low joint entropy together with high marginal
entropies

I (A,B) = H(A) + H(B) − H(A,B) =
∑
a

∑
b

pT
AB(a, b) log

pT
AB(a, b)

pT
A(a).p

T
B (b)

. (19)

The difference between joint entropy and mutual information is illustrated for serial MR
images in figure 3. These plots were obtained from MR images that were acquired perfectly
aligned5. The correct registration transformation should correspond to zero rotation and zero
translation, so we want the optimum value of the similarity measure to be at this position.
Figure 3 plots the value of joint entropy, marginal entropies and mutual information for
misalignments of between 0 and 6 mm in 0.2 mm increments. Subvoxel translation was
achieved using trilinear interpolation which can introduce interpolation errors. The plots
therefore show the change in entropies with translation both using the original data (full curve),
and using the data pre-filtered with a Gaussian of variance 0.5 voxels to smooth the images and
reduce interpolation artifacts (broken curve). These plots demonstrate three important points.
Firstly, the marginal entropies change with translation due to change in the overlap domain
�T

A,B . Secondly, that mutual information (I (A,B)) varies more smoothly with misregistration
than joint entropy (H(A,B)). Thirdly, subvoxel interpolation can blur the images, resulting
in reduced entropy that introduces local extrema into parameter space, and the consequences
of this are greatly reduced by preblurring the data.

Mutual information can qualitatively be thought of as a measure of how well one image
explains the other, and is maximized at the optimal alignment. We can make our description
more rigorous if we think more about probabilities. The conditional probability p(b|a) is the
probability that B will take the value b given that A has the value a. The conditional entropy
is, therefore, the average of the entropy of B for each intensity in A, weighted according to

5 A two average gradient echo volume sequence was acquired with isotropic voxels of dimension 2 mm. The raw data
were exported from the scanner, and echoes contributing to the two averages were separated and reconstructed as two
different images. Because the echoes contributing to the two images are interleaved, the acquisitions are essentially
simultaneous, so are registered. However, as the echoes in the two images are obtained from different excitations,
random noise and artefact should be different in the two images.
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Figure 3. A comparison of change in marginal and joint entropies with cranial–caudal translation
for registration of two MR images that differ only by noise. Top left H(A), top right H(B), bottom
left H(A,B) and bottom right I (A,B). Each plot has two traces. The full curve is calculated
with the images at original resolution, with subvoxel translation achieved using linear interpolation.
Note the local extrema of the measures with the period of the voxel separation (2 mm). The broken
curve is obtained from images that have been preblurred with a Gaussian kernel with variance
σ 2 = 0.5 voxels. This has no effect on H(A), as image A is not interpolated. For H(B), the
preblurring with a Gaussian kernel reduces the interpolation artefacts, and results in a smooth trace
for mutual information.

the probability of getting that intensity in A

H(B|A) = −
∑
a,b

p(a, b) logp(b|a) = H(A,B) − H(A). (20)

Using equation (20), we can rewrite our previous expression for mutual information
(equation (19))

I (A,B) = H(A) − H(B|A) = H(B) − H(A|B). (21)

The maximization of mutual information, therefore, involves minimizing the conditional
entropy with respect to the entropy of one of the images. The conditional entropy will be zero
if, knowing the intensity value A(xA), we can exactly predict the intensity value in BT . The
conditional entropy will be high if a given intensity value A(xA) in image A is a very poor
predictor of the intensity value BT (xA) in the corresponding location in image B.

Given that the images are of the same object, then when they are correctly registered,
corresponding voxels in the two images will be of the same anatomical or pathological structure.
Knowing the value of a voxel in image A should, therefore reduce the uncertainty (and hence
entropy) for the value of the corresponding location in image B. This can be thought of as
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a generalization of the assumption made by Woods in his PIU measure. The PIU measure
assumes that at registration the uniformity of values in B corresponding to a given value a in
A should be minimal. The information theoretic approaches assume that, at alignment, the
value of a voxel in A is a good predictor of the value at the corresponding location in B. As
misregistration increases, one image becomes a less good predictor of the second. In practical
terms, the advantage of mutual information over PIU is that two structures which have the
same intensity in image A may have very different intensities in image B. For example, in
an MR image, cortical bone and air will both have very low intensities, whereas in CT, air
will have a very low intensity but cortical bone a high intensity. If we have a low-intensity
voxel in image A, then at correct alignment we know that this should either be air or bone
in the CT image6. The histogram of CT intensity values corresponding to low intensities in
MR will, therefore, have sharp peaks at both low-intensity values and high-intensity values,
and the sharp peaks in the histogram give us low entropy. Even though the MR intensity is a
good predictor of the CT intensity, however, the PIU would give a very low uniformity value.
Mutual information has been compared with other voxel similarity measure for MR–CT and
MR–PET registration (e.g. Studholme et al 1996, 1997).

7.3.3. Normalized mutual information. Mutual information does not entirely solve the
overlap problem described above. In particular, changes in overlap of very low-intensity
regions of the image (especially air around the patient) can disproportionately contribute to
the mutual information. As was stated earlier, Shannon (1948) was the first to present the
functional form of mutual information, calling it the ‘rate of transmission of information’
in a noisy communication channel between source and receiver. In his application in
telecommunications, the time over which the different measurements of the source and receiver
are made are constant, by definition. In image registration, however, the quantity analogous
to time is the total number of image data in the overlap domain �T

A,B , and this changes with
the transformation estimate T . To remove this dependence on volume of overlap we should
normalize to the combined information in the overlapping volume.

Three normalization schemes have so far been proposed in journal articles to address this
problem. Equations (22) and (23) below were mentioned in passing in the discussion section
of Maes et al (1997), though no results were presented comparing them with standard mutual
information (equation (19))

Ĩ1(A,B) = 2I (A,B)

H(A) + H(B)
(22)

Ĩ2(A,B) = H(A,B) − I (A,B). (23)

Studholme et al (1999) have proposed an alternative normalization devised to overcome
the sensitivity of mutual information to change in image overlap. This measure involves
normalizing mutual information with respect to the joint entropy of the overlap volume

Ĩ3(A,B) = H(A) + H(B)

H(A,B)
= I (A,B)

H(A,B)
+ 1 = 1

Ĩ1(A,B) − 2
. (24)

This third version of normalized mutual information has been shown to be considerably
more robust than standard mutual information for intermodality registration in which the
overlap volume changes substantially (Studholme et al 1999). For serial MR registration,
when images A and B have virtually identical fields of view, however, mutual information

6 We are assuming in this example that the MR sequence being used will give us no other structures with very low
intensity.
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and normalized mutual information (equation (24)) have been shown to perform equivalently
(Holden et al 2000).

8. Optimization and capture ranges

With the exception of registration using the Procrustes technique described in section 5.1, and
in certain circumstances the registration algorithm in SPM described in section 7.1, all the
registration algorithms reviewed in this article require an iterative approach, in which an initial
estimate of the transformation is gradually refined by trial and error. In each iteration, the
current estimate of the transformation is used to calculate a similarity measure. The optimiza-
tion algorithm then makes another (hopefully better) estimate of the transformation, evaluates
the similarity measure again, and continues until the algorithm converges, at which point no
transformation can be found that results in a better value of the similarity measure, to within
a preset tolerance. A review of optimization algorithms can be found in (Press et al 1992).

One of the difficulties with optimization algorithms is that they can converge to an incorrect
solution called a ‘local optimum’. It is sometimes useful to consider the parameter space of
values of the similarity measure. For rigid body registration there are six degrees of freedom,
giving a six-dimensional parameter space. Each point in the parameter space corresponds to a
different estimate of the transformation. Non-rigid registration algorithms have more degrees
of freedom (often many thousands), in which case the parameter space has correspondingly
more dimensions. The parameter space can be thought of as a high-dimensionality image
in which the intensity at each location corresponds to the value of the similarity measure
for that transformation estimate. If we consider dark intensities as good values of similarity,
and high intensities as poor ones, an ideal parameter space image would contain a sharp
low intensity optimum with monotonically increasing intensity with distance away from the
optimum position. The job of the optimization algorithm would then be to find the optimum
location given any possible starting estimate.

Unfortunately, parameter spaces for image registration are frequently not this simple.
There are often multiple optima within the parameter space, and registration can fail if the
optimization algorithm converges to the wrong optimum. Some of these optima may be very
small, caused either by interpolation artefacts (discussed further in section 9) or a local good
match between features or intensities. These small optima can often be removed from the
parameter space by blurring the images prior to registration. In fact, a hierarchical approach
to registration is common, in which the images are first registered at low resolution, then the
transformation solution obtained at this resolution is used as the starting estimate for registration
at a higher resolution, and so on.

Multiresolution approaches do not entirely solve the problem of multiple optima in the
parameter space. It might be thought that the optimization problem involves finding the globally
optimal solution within the parameter space, and that a solution to the problem of multiple
optima is to start the optimization algorithm with multiple starting estimates, resulting in
multiple solutions, and choose the solution which has the lowest value of the similarity measure.
This sort of approach, called ‘multistart’ optimization, can be effective for surface matching
algorithms. For voxel similarity measures, however, the problem is more complicated. The
desired optimum when registering images using voxel similarity measures is frequently not the
global optimum, but is one of the local optima. The following example serves to illustrate this
point. When registering images using joint entropy or mutual information, an extremely good
value of the similarity measure can be found by transforming the images such that only air in the
images overlaps. This will give a few pixels in the joint histogram with very high probabilities,
surrounded by pixels with zero probability. This is a very low entropy situation, and will tend
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to have lower entropy than the correct alignment. The global optimum in parameter space
will, therefore, tend to correspond to an obviously incorrect transformation. The solution to
this problem is to start the algorithm within the ‘capture range’ of the correct optimum, that
is within the portion of the parameter space in which the algorithm is more likely to converge
to the correct optimum than the incorrect global one. In practical terms, this requires that the
starting estimate of the registration transformation is reasonably close to the correct solution.
The size of the capture range depends on the features in the images, and cannot be known
a priori, so it is difficult to know in advance whether the starting estimate is sufficiently good.
This is not, however, a very serious problem, as visual inspection of the registered images,
described further in section 11, can easily detect convergence outside the capture range. In
this case, the solution is clearly and obviously wrong (e.g. relevant features in the image do
not overlap at all). If this sort of failure of the algorithm is detected, the registration can be
re-started with a better starting estimate obtained, for example, by interactively transforming
one image until it is approximately aligned with the other.

9. Image transformation

Image registration using voxel similarity measures involves determining the transformation
T that relates the domain of image A to image B. This transformation can then be used to
transform one image into the coordinates of the second within the region of overlap of the two
domains �T

A,B . As discussed in section 2 above, this process involves interpolation, and needs
to take account of the difference in sample spacing in images A and B.

9.1. A consideration of sampling and interpolation theory

Shannon (1949) showed that a bandlimited signal sampled with an infinite periodic sampling
function can be perfectly interpolated using the sinc function interpolant previously proposed
by the mathematician Whittaker (1935). Many medical images are, however, not bandlimited.
For example, multislice datasets are not bandlimited in the through-slice direction, as the field
of view is truncated with a top-hat function. Even in MR image volumes reconstructed using
a 3D Fourier transform, the condition is not usually satisfied because the image data provided
by the scanner are often truncated to remove slices at the periphery at the field of view. Also
the data provided are usually the modulus of the signal, and taking the modulus is a nonlinear
operation that can increase the spatial frequency content.

Even if the images being transformed were strictly bandlimited, it would not be possible
to carry out perfect interpolation using a sinc function because a sinc function is infinite in
extent.

For many purposes, this problem is entirely ignored during medical image analysis. The
most widely used image interpolation function is probably trilinear interpolation, in which
a voxel value in the transformed coordinates is estimated by taking a weighted average of
the nearest eight neighbours in the original dataset. The weightings, which add up to one,
are inversely proportional to the distance of each neighbour to the new sample point. For
the accurate comparison of registered images, for example by subtracting one image from
another, the errors introduced by trilinear interpolation become important. It can be shown
that trilinear interpolation applies a low-pass filter to the image and introduces aliasing (Parker
et al 1983). For transformations that contain rotations, the amount of low-pass filtering varies
with position in the image. If subtracting one image from another to detect small change, for
example in serial MR imaging, the low-pass filtering in this process can lead to substantial
artefacts. Subtracting a low-pass filtered version of an image from the original is a well known



Medical image registration R29

edge enhancement method, so even in the case of identical images differing only by a rigid
body transformation, using linear interpolation followed by subtraction does not result in the
expected null result but instead results in an edge enhanced version of the original.

Hajnal et al (1995a) recently brought this issue to the attention of MR image analysts and
proposed that the solution is to interpolate using a sinc function truncated with a suitable
window function such as a Hamming window. Care must be taken when truncating the
interpolation kernel to ensure that the integral of the weights of the truncated kernel is unity,
or an artefactual intensity modulation can result (Thacker et al 1999).

Various modifications to sinc interpolation have recently been proposed. These fall
into three categories. Firstly, the use of sinc functions with various radii truncated with
various window functions (Lehmann et al 1999). Secondly, approximations to windowed
sinc functions such as cubic or B-spline interpolants (Lehmann et al 1999, Unser 1999).
Thirdly, the shear transform, which involves transforming the image using a combination of
shears (Eddy et al 1996, Cox and Jesmanowicz 1999). This third approach is fast, though it
does result in artefacts in the corners of the image which must be treated with caution.

An assumption implicit in the discussion above is that the original data being interpolated
are uniformly sampled. This is not always the case in medical images. MR physics researchers
are used to the problem of non-uniform sampling in the acquisition, or k-space domain (Robson
et al 1997, Atkinson et al 2000), but this problem is less often considered in the spatial
domain. The most common circumstances when non-uniform sampling arises are in free-
hand 3D ultrasound acquisition and certain types of CT acquisition where the slice spacing
changes during the acquisition. The correct way of interpolating from non-uniformly sampled
data onto a uniform grid is the reverse of sinc interpolation. This methodology, sometimes
used in k-space regridding (Robson et al 1997, Atkinson et al 2000), involves calculating the
sinc coefficients to go from the desired uniform sampling points to the non-uniform locations
acquired, and inverting the matrix of coefficients in order to do the correct interpolation. In
the cases of 3D ultrasound and CT variable slice sample spacing, the data are a long way from
being bandlimited, so the benefits of inverse sinc interpolation may be small in any case.

9.2. Interpolation during registration

Many registration algorithms involve iteratively transforming imageAwith respect to imageB
while optimizing a similarity measure calculated from the voxel values. Interpolation errors
can introduce modulations in the similarity measure with T . This is most obvious for
transformations involving pure translations of datasets with equal sample spacing, where the
period of the modulation is the same as the sample spacing (Pluim et al 2000). Figure 3
illustrates this effect. This periodic modulation of the similarity measure introduces local
minima that can lead to the incorrect registration solution being determined.

The computational cost of ‘correct’ interpolation is normally too high for this approach
to be used in each iteration, so lower-cost interpolation techniques must be used. There are
several possible approaches. The first is to use low-cost interpolation, such as trilinear or nearest
neighbour, until the transformation is close to the desired solution, then carry out the final few
iterations using more expensive interpolation. An alternative strategy is to take advantage of the
spatial-frequency dependence of interpolation errors. Trilinear interpolation low-pass filters
the data, and therefore if the images are blurred prior to registration (high spatial frequency
components are removed), the interpolation errors are smaller so errors in the registration are
less. Although the loss of resolution that results from blurring is a disadvantage, the registration
errors caused by the interpolation errors can be greater than the loss of precision resulting from
blurring.
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9.3. Transformation for intermodality image registration

It should be emphasized that these interpolation issues are more critical for intramodality
registration where accuracy of considerably better than a voxel is frequently desired, than for
intermodality image registration. In intermodality registration, one image is frequently of
substantially lower resolution than the other, and the desired accuracy of the order of a single
voxel at the higher resolution. Furthermore, it is common for the final registration solution to
be used to transform the lower resolution image to the sample spacing of the higher resolution
modality. Interpolation errors are still likely to be present if trilinear interpolation is used
without care, and may slightly reduce the registration accuracy, or degrade the quality of the
transformed images.

10. Registration applications

The most widely used applications of image registration involve determining the rigid body
transformation that aligns 3D tomographic images of the same subject acquired using different
modalities (intermodality registration), or the same subject imaged with a single modality at
different times (intramodality registration). There is increasing interest in non-rigid registration
of the same or different subjects, registration of 2D images with 3D images, and registration of
images with the physical coordinates of a treatment system. In this section we give examples
of some applications of these approaches.

10.1. Rigid-body and affine intermodality registration

The motivation behind the majority of work in medical image registration during the 1980s
was the desire to combine complementary information about the same patient from different
imaging modalities (e.g. Maguire et al 1986, Chen et al 1985, Peters et al 1986, Schad et al
1987, Levin et al 1988, Faber and Stokely 1988, Evans et al 1988, Meltzer et al 1990, Hill
et al 1991). With the introduction of MR imaging into many hospitals, and increasing use
of CT and tomographic nuclear medicine modalities, it was becoming common for patients
to be imaged with more than one tomographic modality during diagnosis or planning of
treatment. Intermodality image registration provided a solution to the problem of relating
images from different modalities that differ in field of view, resolution, and slice orientation.
The head, and the brain in particular, has always been the major area of application for
these techniques partly because the skull makes the rigid body assumption valid. During the
1990s, automatic algorithms that optimize a voxel similarity measure were devised for these
applications, and these have been shown to be more accurate and robust than feature based
registration algorithms for rigid body MR–CT registration and to a lesser extent also for rigid
body MR–PET registration (West et al 1999). The information theoretic approaches described
in section 7.3 have been shown to be the most generally applicable and robust (Studholme
et al 1996, 1997). Figure 4 shows example MR and CT images before and after registration
using an affine transformation. An affine transformation was used in this case to compensate
for scaling and skew errors in the data as well as finding the translations and rotations needed
to align the images.

10.2. Rigid-body intramodality registration

It is becoming common for a subject to be imaged two or more times with the same modality
for diagnosis, treatment monitoring or for research. The images may be separated in time
by seconds (e.g. in functional experiments), minutes (e.g. pre- and postcontrast images), or
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Figure 4. Top row: unregistered MR (left) and CT (right) images. The MR images are shown in
the original sagittal plane, and reformatted coronal plane. The CT images in the original oblique
plane, and reformatted sagittal plane. Note the different field of view of the images. Bottom panel,
MR images in sagittal, coronal and axial planes with the outline of bone, thresholded from the
registered CT scan, overlaid. The registration transformation has 10 degrees of freedom, to correct
for errors in the machine supplied voxel dimensions and gantry tilt angle.

weeks (e.g. monitoring tumour growth). In all these applications it is desirable to have high
sensitivity to small changes in the images. In functional experiments the signal in some voxels
may change by a few per cent between the resting and activated state. In contrast or perfusion
studies, it is desirable to identify regions that enhance, or quantify intensity change in a region
of interest. In longer-term studies, it is desirable to detect small changes in lesion volume or
degenerative change in order to plan treatment or monitor response to therapy. Visual inspection
of images on a light-box has been shown to be less sensitive to these changes than looking at
difference images (Denton et al 2000). Since patients often move during examinations, and
cannot be repositioned perfectly on subsequent visits, registration is an essential prerequisite
for subsequent analysis. Techniques to register intramodality images of the brain using a
rigid-body transformation were an area of active research during the 1990s (e.g. Woods et al
1992, 1998, Hajnal et al 1995a,b, Freeborough et al 1996, Lemieux et al 1998, Holden et al
2000). It might at first seem that intramodality registration is a much simpler problem than
intermodality registration because the images being aligned are very similar to one another. It
turns out, however, that registration accuracy of much less than a voxel is necessary, so great
care must be taken to handle the image transformation issues discussed in section 9 (Hajnal
et al 1995a). While similarity measures such as SSD, RIU and CC described in section 6
are successfully used for intramodality registration of brain images, care must be taken in the
optimization and interpolation to ensure high-quality results. Furthermore, although the brain
can be accurately aligned using a rigid body transformation, deformable regions such as the
scalp and neck, or regions that change substantially between acquisitions (e.g. due to contrast
uptake), can bias the result, leading to significant errors. Presegmentation of the images to
exclude these regions can be necessary (Hajnal et al 1995a). Alternatively, it has been shown
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that the information theoretic similarity measures discussed in section 7.3 can be less sensitive
to these changes, and may have an advantage over the more obvious intramodality measures
described in section 6 for this application (Holden et al 2000).

10.3. 2D–3D registration

There is increasing interest in the registration of 2D projection images with 3D tomographic
images. One example of a 2D–3D registration problem is aligning video images with
tomographic modalities. This can be achieved using surface reconstruction from video
followed by surface matching (e.g. Colchester et al 1996, Grimson et al 1996). Registration of
video images with rendered views calculated from tomographic images has also been proposed
(e.g. Viola 1995, Clarkson et al 1999, 2000), but these approaches have not yet been shown to
work reliably on clinical data.

The predominant 2D–3D registration application is registration of fluoroscopy images
and CT images in order to align preinterventional CT scans with interventional x-ray images
(Lemieux et al 1994a, Weese et al 1997, Penney et al 1998, Lavallée and Szeliski 1995). The
most widely used approach to this problem is to simulate projection x-rays from the CT scans to
produce digitally reconstructed radiographs (DRRs), and to iteratively estimate the unknown
pose of the x-ray set relative to the CT volume by optimizing a voxel similarity measure
calculated from the fluoroscopy image and DRR. If the DRR is a good approximation to the
fluoroscopy image, then cross correlation is an appropriate measure (Lemieux et al 1994b).
A particular problem with interventional fluoroscopy images is that they often contain high-
contrast objects such as instruments and prostheses that have been added to the field of view.
While bone and soft tissue in accurately simulated DRRs may have similar intensity values
to the corresponding pixels in aligned fluoroscopy images, the instruments and other added
objects are, of course, absent in the preinterventional CT scan. Many voxel similarity measures
are extremely sensitive to a small number of pixels that have large differences between the
modalities, and both cross correlation and mutual information have been found to be unreliable
for this task (Penney et al 1998).

10.3.1. Pattern intensity. Pattern intensity is a similarity measure proposed by Weese et al
(1997) to register fluoroscopy and CT images. It differs from other measures in that it calculates
the value of the similarity measure at each pixel using a neighbourhood of other pixels, rather
than just the corresponding pixels themselves. Considering imageA to be the x-ray fluoroscopy
image, and image BT to be the DRR generated from the CT scan B, pattern intensity is defined
in terms of a difference image D. We describe the pattern intensity measure below in 2D, as
originally proposed, although it can also be extended in 3D

D(xA) = A(xA) − λBT (xA)

where λ is an intensity scaling factor. The pattern intensity, PI, is then calculated from the
difference image over a neighbourhood of N pixels within a radius r each pixel xA

PIr,σ =
∑

xA∈�T
A,B

∑
u,v

σ 2

σ 2 + (D(xA) − D(u, v))2

where {u, v} are pixels in the neighbourhood of xA such that |xA − (u, v)| � r . There are two
parameters required by this similarity measure. The first is the radius of the neighbourhood
r . Increasing r can improve the reliability of the algorithm, but increases the computational
requirement. Values of between 3 and 5 are proposed. The parameter σ controls the sensitivity
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of the measure to image features. Weese suggests it should be larger than the standard deviation
of the noise in the fluoroscopy image but smaller than the contrast of structures of interest.

To understand how pattern intensity works, it is useful to compare it with the sum of squares
of intensity difference measure introduced in section 6.1 above. If pixels A(xA) and BT (xA)

are identical, and part of uniform patches of radiusR > r , then pixel xA will contribute 0 to the
sum of squares of difference measure and N σ 2

σ 2+0 = N to the pattern intensity measure. The
corresponding contribution of pixel xA if it is part of a uniform region in the presence of noise
δ would be δ2 for the sum of squares of difference measure, and approximately N σ 2

σ 2+δ2 ≈ N

to pattern intensity. For a uniform region of very large difference in intensity � � σ , the
pixel xA will contribute the large value of �2 to the sum of squares of difference measure,
and approximately N σ 2

σ 2+�2 ≈ 0 to the pattern intensity measure. As � increases, the sum
of squares of intensity measure will increase as �2, but pattern intensity will asymptotically
approach zero, with the consequence that regions of very great difference in intensity contribute
proportionately less to pattern intensity than to the sum of squares of intensity difference.
Furthermore, if xA is a single pixel with a large difference � between modalities, surrounded
by a uniform patch that is the same in both modalities, then this pixel will still give a contribution
�2 to the sum of squares of difference measure, but a contribution of N − 1 ≈ N to pattern
intensity. Pattern intensity is, therefore, almost totally insensitive to individual pixels, or small
numbers of pixels n � N where there is a very large difference between modalities. Since
high-contrast instruments in the fluoroscopy image have exactly this characteristic, pattern
intensity is much less sensitive to these objects than sum of square of intensity differences.

10.4. Non-rigid registration: beyond the affine transformation

As was stated in the introduction, aligning images using registration transformations with more
degrees of freedom than the affine transformation is an active area of research in which rapid
progress is being made. This review does not, therefore, attempt a comprehensive examination
of the area (which would inevitably become out of date extremely rapidly). Instead we give a
brief introduction to the field.

Non-affine registration algorithms normally either include an initial rigid body or affine
transformation, or are run after a rigid-body or affine algorithm has provided a starting estimate.
Many different approaches are used. When point landmarks are available, thin-plate splines
are often used to determine the transformation (Bookstein 1989). Using intensity-based
algorithms (with the measures described in sections 6 and 7), the non-rigid component of
the transformation can be determined using a linear combination of polynomial terms (Woods
et al 1998), basis functions (Friston et al 1995) or B-spline surfaces defined by a regular
grid of control points (Rueckert et al 1999). Alternatively, pseudophysical models can be
used in which the deformation of one image with respect to another is modelled as a physical
process such as elastic deformation or fluid flow. It is also possible to mix rigid and non-rigid
transformations in the same image (Little et al 1997).

The transformation T determined by a non-affine registration algorithm can be regarded as
a deformation field that records the displacement vector at each voxel in imageB needed to align
it with the corresponding location in imageA. For some non-affine registration applications, T
is the most useful outcome of the registration. In a recent study of brain development, serially
acquired MR images of children were registered using a non-affine algorithm in order to gain
a better understanding of the rate of growth of different structures in the brain (Thompson et al
2000). Also, T can be used to propagate segmented structures between images that have been
registered using a non-affine algorithm, for example to measure change in volume of structures
over time (Dawant et al 2000).
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10.4.1. Thin plate spline warps from point landmarks. The point registration technique
described in section 5.1 above can be used to determine the rigid body or affine mapping that
aligns the pointsP andQ in a least squares sense. If the structures being aligned are deformable,
then it may be more appropriate to warp one of the images so that the landmarks are aligned.
In the absence of any other information (for example about the mechanical properties of the
tissue), the most appropriate transformation might be the one that matches the landmarks
exactly, and bends the rest of space as little as possible. This requires an appropriate definition
of bending, or bending energy. Intuitively, the squared norm of the second derivative is a good
choice of energy. This can also be justified more rigorously from plate theory (Marsden and
Hughes 1994). Also, by analogy with differential geometry, the curvature is related to second
derivatives of the metric tensor. In more than one dimension, this is to be interpreted as sum
of squares of all second order derivatives of all components of the mapping T .

Variational problems of this type are usually solved by finding a corresponding PDE
equation, whose solution are minimizers. Here the PDE operator is the Laplacian of the
Laplacian (��) (Harder and Desmarais 1972, Goshtasby 1988, Bookstein 1989). Solutions
are built by superposition of fundamental solutions, called thin plate splines, again by analogy
with plate theory. The reader might be more familiar with fundamental solutions of the normal
Laplacian � = ∑

i ∂
2
xi

. In both cases, it is important to notice that these solutions have
a different form in different dimensions: in one dimension, the thin plate splines are cubic
splines (Dryden and Mardia 1998), in higher dimensions they are functions of the distance to
the landmarks. In two dimensions there is a logarithmic term

x′ = Lx + t +
N∑
i

ci r
2
i ln r2

i (25)

whereas in three dimensions it takes the simpler form

x′ = Lx + t +
N∑
i

ci ri (26)

where L is a linear transformation, t is a translation, and ri is the distance to a landmark ci .

10.4.2. Non-affine registration by optimising a similarity measure. The similarity measures
described in sections 6 and 7 can be used for affine or non-affine registration. When calculating
non-affine transformations, it is normal to optimize a cost function that is the combination of a
term due to the similarity measure, and a regularization term. The regularization term assigns
high cost to undesirable transformations, such as high local stretching or bending, or folding
of the transformation (Rueckert et al 1999, Ashburner and Friston 1999). In this section we
describe some examples of non-affine registration algorithms.

The approach used in the AIR software package (Woods et al 1998) is to initially calculate
an affine transformation, then refine this to calculate a non-affine transformation in which
the position of each voxel in image BT is a polynomial expansion of its location in image
B. For a second-order polynomial, there are 10 degrees of freedom for each axis (30 in
total), rising to 60 degrees of freedom for third order and 105 degrees of freedom for fifth
order.

An alternative to using polynomials is to break the image up into regions that are able
to move independently of one another. Following an approximate alignment of images A

and B using a rigid or affine transformation, the images can be split up into an array of
nodes. These nodes may be the control points of a spline such as a B spline (Rueckert et al
1999), or may be regarded as the centre of a local region of interest (ROI). Each node in



Medical image registration R35

(a) (b)

(c) (d) (e)

Figure 5. Example slice from (a) pre-contrast and (b) post-contrast MR mammogram. Without
registration, the difference image contains distracting artefacts (c). Affine registration results in
some improvement (d). Non-rigid registration (e), using a 10 mm grid of B-spline control points
(Rueckert et al 1999) results in reduced artefact and improved diagnostic value (Denton et al 2000).

image B is iteratively translated, or a local affine transformation is iteratively determined
for each ROI, in order to optimize the chosen cost function. The similarity measures SSD
and CC can be evaluated locally on each ROI. The information theoretic measures such as
MI and NMI, however, are statistical in nature, and the estimate determined from a small
number of voxels is poor. In this case, the similarity measure should be calculated from
the entire image for each node displacement. B-spline interpolation between nodes has the
useful characteristic that they have ‘local support’, which means that only voxels within a
radius of about two node spacings are affected by translation of that node, so when optimizing
information theoretic measures on an array of B-splines, only a small portion of the image
needs to be transformed with each iteration, even though the similarity measure is evaluated
over the whole image.

Figure 5 shows an example non-affine registration of pre- and postcontrast MR
mammograms obtained by optimizing normalized mutual information (NMI) on a 10 mm
array of B-spline control points (Rueckert et al 1999).

For some regions of the body, it is important to distinguish between different tissues that
have very different mechanical properties, such as bone and soft tissue. The algorithm of
Little et al (1997) provides a technique to treat multiple rigid bodies within a deformable
matrix.



R36 D L G Hill et al

(a) (b) (c)

Figure 6. Axial (top) and coronal (bottom) slices from average images produced from MR scans
of seven different normal controls, registered using (a) rigid registration, (b) affine registration and
(c) non-rigid registration using a 10 mm grid of B-spline control points (Rueckert et al 1999). In
all cases the registration was achieved by maximizing normalized mutual information, as described
in section 7.3.3. Note that after rigid registration the average image is quite blurred, indicating
that rigid registration does not line up the different brain scans very well. After affine registration,
the images are a lot less blurred, especially around basal structures. The non-rigid registration,
however, produces the sharpest image, indicating that this sort of algorithm is better at lining up
brain features between subjects.

10.4.3. Intersubject registration. In neuroscience research it is standard practice to register
images from different individuals into a standard space, in order to study variability between
subjects, or to compare normal subjects with volunteers. This type of registration is frequently
called intersubject normalization. The most common space to align images is in the Talairach
stereotactic space. Aligning images with this space involves registering them with an electronic
version of the Talairach atlas (Talairach and Tournoux 1988), generated from one post-mortem
female brain. The alignment is most commonly carried out with an affine transformation (e.g.
Collins et al 1994), but more degrees of freedom are sometimes used (Friston et al 1995,
Ashburner and Friston 1999, Collins et al 1995, Woods et al 1998, Christensen et al 1996).
This is normally treated as an intramodality registration problem, as it is normal to register the
images of a particular subject to the images of another subject of the same modality whose
images have already been put into Talairach space. The approaches described in section 10.4.2
above are, therefore, appropriate for this application.

Figure 6 compares the mean image obtained after registering seven MR images of normal
subjects using a rigid body, affine and non-affine transformation by optimizing normalized
mutual information using the algorithm of Rueckert et al (1999). Note the increasing sharpness
of the average image as the number of degrees of freedom increases.
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10.5. Image-to-physical space registration

Image-to-physical space registration is important when it is desirable to align images with a
patient in the treatment position. The main applications are in image-guided neurosurgery
and radiation therapy. The earliest approach was to use a stereotactic frame, rigidly attached
to the patient. This frame could be fitted with imaging markers visible in MR, CT or x-ray
angiography, and these markers could be used to relate image coordinates with treatment
coordinates defined by the frame (Peters et al 1986, Kelly 1991). More recently, frameless
techniques have been devised. These use point landmarks or surface features for registration.
For neurosurgical applications, markers rigidly attached to the skull are quite invasive, but can
provide high accuracy (Maurer et al 1997, Edwards et al 2000). Skin-affixed markers have
less accuracy, but are also much less invasive (Roberts et al 1986). Bite blocks or dental stents
(Howard et al 1995, Hauser et al 1997, Fenlon et al 2000) rigidly attached to the teeth provide
a minimally invasive and relocatable system for registration of images to physical space. The
patient is usually scanned wearing the stent with the imaging markers attached. During the
intervention, LEDs can be attached to the stent to track head movement. These devices have
been shown to provide relocation accuracy of better than 2 mm and tracking accuracy of
less than 1 mm if carefully constructed (Fenlon 2000). An even less invasive approach is to
use surface anatomical points, but this is very user dependent. Whichever points are used,
registration can be achieved using the point registration algorithm described in section 5.1.

An alternative approach is to use surfaces for registration. The skin or exposed bone surface
can be recorded in physical space using optical methods (Colchester et al 1996, Grimson et al
1996) or by manual tracking of a localizer over the skin surface (Tan et al 1993). These
techniques do not require any markers to be attached to the patient prior to imaging, though
points can also be used to improve robustness (Maurer et al 1998). In these cases, registration
is achieved using one of the surface matching algorithms described in section 5.2.

11. Quantifying registration accuracy

There are two main reasons why it is desirable to quantify registration accuracy. The first
is to calculate the expected accuracy of an algorithm in order to ascertain whether it is good
enough for a particular clinical application, or in order to compare one algorithm with another.
The second reason is to assess the accuracy of registration for a particular subject, for example
prior to using the registered images to make a decision about patient management.

The accuracy of a registration transformation T cannot easily be summarized by a single
number, as it is spatially varying over the image. If T is the calculated transformation, and Tg

is the true ‘gold standard’ transformation, then the registration error will vary with position
xA in the image. If we think of each point in the image as a potential target of some treatment,
then we can define the error at this point as the target registration error (TRE) as follows:

TRE(xA) = |T (xA) − Tg(xA)|. (27)

The TRE will normally vary with position. For example, in a rigid body transformation there
will typically be rotational components. It may be that at some position in the image, by
chance, the rotational component of the transformation cancels out the error in the translation
component, giving TRE = 0. Elsewhere, however, the TRE will be greater. In the extremely
unlikely case that the only error in a transformation is a translation error, then TRE will be the
same everywhere. If Tg is known, then TRE can be calculated everywhere in the image. In this
case, an image of TRE could be produced. In practice, it is more common to summarize the
TRE distribution for example by considering the mean or maximum value. For most practical
situations, however, Tg is not known, so TRE cannot be calculated.
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11.1. Point landmark registration

11.1.1. Errors in rigid body point registration. For rigid body registration using fiducial
points, a theory of errors has been devised that can predict the expected error distribution
based on errors in localizing individual points, and the distributions of points.

It is clear that the localization of the fiducial points is never perfect. Fitzpatrick et al
(1998b) call this error the fiducial localization error (FLE). The residual error in fitting of
point sets is called the fiducial registration error (FRE). The distribution of FRE given the
distribution of FLE has been described by Sibson (1978). Fitzpatrick et al (1998b) stress that
what really matters is not the FRE, as the fiducials are not located at the places of interest in
the subject, but the target registration error (TRE) we introduced earlier, i.e. the error induced
by FLE at a given target. Explicitly, if the mean FLE is ε, the rotation and translations
Tε := (Rε, tε) which solve the Procrustes problem are going to contain an error. The target
registration error (TRE) at the target x is then |Tε(x) − T (x)|. Fitzpatrick et al (1998b)
provide formulae in first order in ε for TRE as a function of FLE, explaining a decrease in
1/

√
N , where N is the number of points. Summarized: the squared expectation value of TRE

at position x, (coordinates (x1, . . . , xK) is going to be to first order

〈TRE(x)2〉 ∼= 〈FLE〉2

(
1

N
+

1

K

K∑
i

K∑
j �=i

x2
i

<2
i + <2

j

)

where K is the number of spatial dimensions (normally three for medical applications) and <i

are the singular values of the configuration matrix of the markers.

11.2. Determining registration accuracy using a gold standard

If images are available for which the correct registration transformation is known, then
registration accuracy can be calculated by comparing the transformation calculated by any
registration algorithm with the known, ‘gold standard’ solution.

In the case of simulated data, the gold standard can have arbitrary accuracy, but the
images are often not very realistic. An alternative is to use a gold standard method to register
the images very accurately, and then compare any other algorithm with the solution obtained
with the gold standard algorithm. This is a satisfactory approach if a gold standard algorithm
can be applied to a group of test images, but it would not be appropriate for other registration
tasks. For intermodality registration, this can be achieved by using invasive markers to provide
the gold standard. These invasive markers can be attached to cadavers (Hemler et al 1995),
or to surgical patients (West et al 1997), and the markers removed from the images prior to
using these images as test data for algorithms that could be used when no invasive markers
are available. Because the invasive markers can determine the transformation with a TRE at
locations of interest of about 0.5 mm (Maurer et al 1997), the resulting images are useful for
testing other algorithms. This approach has so far only been shown to be effective for rigid
body intermodality registration. For non-rigid registration, or intramodality registration when
much higher accuracy is required, the approach is not satisfactory.

11.3. Determining registration accuracy using consistency measurements

Because there is no realistic gold standard for intermodality registration, authors frequently
test their algorithms by measuring the consistency of transformations (Freeborough et al 1996,
Woods et al 1998, Holden et al 2000). Given three images of the same subject, A, B and C,
there are three transformations that can be compared TA→B , TB→C and TC→A. Applying all
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three transformations in turn completes a circuit, and should give the identity transformation
for a perfect algorithm.

Tc = TA→BTB→CTC→A.

For any real algorithm, of course, Tc will not be the identity. This will give a transformation
that provides an estimate of the errors. If the registration errors in the process are uncorrelated,
then the RMS registration error for one application of the algorithm will be 1√

3
times the

error for the whole circuit. Because one image is common in each of TA→B , TB→C and
TC→A, however, the errors are not uncorrelated, so the errors estimated in this way will tend
to underestimate the true error of the algorithm. As an extreme example, an algorithm that
always produces an erroneous transformation close to the identity would incorrectly be found
to be perform well according to this measure.

11.4. Visual assessment

In many situations, the only practical means of estimating registration accuracy for a single
patient is to visually inspect the images. An observer looks at the registered images, using
various tools such as colour overlays and difference images, and classifies the registration
solution as either a ‘success’ or a ‘failure’ depending on whether they judge the registration
accuracy to be above or below the required application accuracy. This is very effective if
an algorithm normally registers images well within the required accuracy, but occasionally
fails in an obvious way. For algorithms that produce a fairly uniform range of errors on
either side of the required accuracy, however, there is a risk that an observer will generate
too many false negatives (images that are sufficiently well registered but are classified as
failures), or false positives (images that are not well enough registered, but are classified as
successes). This approach has been carefully studied for rigid body registration of MR and
CT images (Fitzpatrick et al 1998a). Preliminary work in serial MR registration has suggested
that observers have high sensitivity to errors greater than 0.2 mm when viewing difference
images (Holden et al 2000).

12. Conclusions

In this review we have introduced the topic of medical image registration and discussed the
main approaches described in the literature. The main emphasis of this article is intrasubject
registration of tomographic modalities, which is predominantly used to find the rigid-body
or affine transformation needed to align images of the head. We have also considered in
less detail the closely related topics of non-affine registration (for intrasubject registration of
deformable regions, and intersubject registration) 2D–3D registration, and image-to-physical
space registration. Non-affine registration, in particular, is a rapidly developing area with many
potential applications in healthcare and medical research.

Because most current algorithms for medical image registration calculate a rigid body
or affine transformation, their applicability is restricted to parts of the body where tissue
deformation is small compared with the desired registration accuracy, and in practice they are
used most commonly for registration of images of the head. The most accurate algorithms
for intermodality registration of the head are based on optimizing a voxel similarity measure.
The most generally applicable of these algorithms are currently the ones based on information
theory. These algorithms can be applied automatically to a variety of modality combinations
for intermodality and intramodality registration, without the need for presegmentation of the
images. They can also be extended to non-affine transformations.
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One further appeal of these information theoretic approaches is the mystique that surrounds
the word entropy. An interesting anecdote to emphasize this point comes from a conversation
between Shannon and Von Neumann (quoted in Applebaum (1996)). Apparently, Shannon had
asked Von Neumann which name he should give to his measure of uncertainty. Von Neumann
answered: ‘You should call it “entropy”, and for two reasons: first, the function is already
in use in thermodynamics under that name; second, and more importantly, most people don’t
know what entropy really is, and if you use the word ‘entropy’ in an argument, you will win
every time!’ There is, as yet, no proof that the information theory measures are in any way
optimal for image registration, and better measures are likely to be devised in due course.

The first algorithms for medical image registration were devised in the early 1980s, and
fully automatic algorithms have been available for many intermodality and intramodality
applications since the mid 1990s. Despite this, at the time of writing, image registration is still
seldom carried out on a routine clinical basis. The most widely used registration applications
are probably image-to-physical space registration in neurosurgery and registration of functional
MR images to correct for interscan patient motion. Intermodality registration, which accounts
for the majority of the literature in this area, is still unusual in the clinical setting.

Image registration is, however, being widely used in medical research, especially in
neuroscience where it is used in functional studies, in cohort studies and to quantify changes
in structure during development and ageing.

One barrier to the routine clinical use of image registration may be the logistical difficulties
in getting the images to be registered onto the same computer. Medical research labs doing a
lot of imaging tend to have a more integrated infrastructure than hospitals, so do not suffer from
this problem. The healthcare sector is now moving towards integrating text-based and image
information about the patient to produce multimedia electronic patient records, and when this
infrastructure is in place, the logistics of image registration will be much easier. Another
reason for the lack of clinical use of image registration might be that traditional radiological
practice can provide all the necessary information for patient management, and registration is
unnecessary. Even if this second argument is currently valid, the increasing data generated by
successive generations of scanners (including new multislice helical CT scanners) will steadily
increase the need for registration to assist the radiologist carry out his or her task.

It is worthwhile briefly considering how image registration is likely to evolve over the
next few years. Increasing volumes of data and multimedia electronic patient records have
already been referred to, and these practical developments may see registration entering routine
clinical use at many centres. Also, increasing use of dynamic acquisitions such as perfusion
MRI will necessitate use of registration algorithms to correct for patient motion. In addition,
non-affine registration is likely to find increasing application in the study of development,
ageing and monitoring changes due to disease progression and response to treatment. In
these latter applications, the transformation itself may have more clinical benefit than the
transformed images, as this will quantify the changes in structure in a given patient. New
developments in imaging technology may open up new applications of image registration. It
has recently been shown that very high field whole-body MR scanners can produce high signal
to noise ratio images of the brain with 100 µm resolution (Robitaille et al 2000). Intramodality
registration of these images may open up new applications such as monitoring change in small
blood vessels. Also, while ultrasound images have been largely ignored by image registration
researchers up until now, the increasing quality of ultrasound images and its low cost makes
this a fertile area for both intramodality and intermodality applications (e.g. Roche et al 2000,
King et al 2000).

In some ways, medical image registration is a mature technology that has been around for
nearly two decades and has attracted considerable research activity in devising and validating
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algorithms, and in demonstrating clinical application. We believe, however, that there will be
substantial additional innovation in this area over the next few years, especially in non-affine
registration, and applications outside the brain. In the next decade, registration algorithms are
likely to enter routine clinical use, and research applications will play a key role in improving
our understanding of physiology and disease processes, especially in neuroscience.
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