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Abstract—Interpolation is required in a variety of medical image processing applications. Al-
though many interpolation techniques are known from the literature, evaluations of these tech-
niques for the specific task of applying geometrical transformations to medical images are still
lacking. In this paper we present such an evaluation. We consider convolution-based interpo-
lation methods and rigid transformations (rotations and translations). A large number of sinc-
approximating kernels are evaluated, including piecewise polynomial kernels and a large number
of windowed sinc kernels, with spatial supports ranging from two to ten grid intervals. In the
evaluation we use images from a wide variety of medical image modalities. The results show that
spline interpolation is to be preferred over all other methods, both for its accuracy and its relatively
low computational cost.

Keywords—Convolution-based interpolation, spline interpolation, piecewise polynomial kernels,
windowed sinc kernels, geometrical transformation, medical images, quantitative evaluation.

1 Introduction

Interpolation of sampled data is required in many digital image processing operations,
such as subpixel translation, rotation, elastic deformation or warping, magnification, or
minification, which need to be carried out for the purpose of image registration or volume
visualization. In most applications, it is of paramount importance to limit as much as
possible the grey-value errors introduced by interpolation. For example, in multimodal-
ity registration of computed tomography (CT), magnetic resonance imaging (MRI), or
positron emission tomography (PET) data, it has been observed that interpolation errors
influence the value of the optimization cost function, which may lead to registration er-
rors [42]. Similar problems had been reported earlier in monomodality registration of MR
images [13]. It has been pointed out that in digital subtraction angiography (DSA), im-
proved registration and resampling methods result in improved image quality [41], which
allows for reduction of contrast material or X-ray dose. It has also been pointed out that
in functional magnetic resonance imaging (fMRI), interpolation errors induced by registra-
tion operations may influence the interpretation of quantitative, longitudinal studies [38].

The common denominator in all of these applications is geometrical transformation of
medical image data. Although many interpolation techniques have been put forward over
the years, evaluations of these techniques for this particular task are still lacking. One
of the earlier studies in this area was reported by Parker et al. [41], who compared the
performance of nearest-neighbor and linear interpolation, as well as cubic convolution, by
analyzing the effects of these techniques on the rotation of images. No quantitative mea-
sures were computed, however, and the only medical image included in that study was a
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single coronary angiogram. A quantitative evaluation of the performance of convolution-
based interpolation techniques in combination with specific fast image rotation algorithms
was presented by Unser et al. [58]. Apart from the interpolation techniques analyzed by
Parker et al. [41], their evaluation also included spline and sinc interpolation. However,
no medical images were used. A more recent study was presented by Ostuni et al. [38],
who compared the performance of linear, cubic spline, and truncated and Hann-windowed
sinc interpolation for the geometrical transformation of fMR images. However, that study
did not include images from other modalities. Grevera & Udupa [11] described the results
of an elaborate quantitative evaluation of a number of both convolution- and shape-based
interpolation methods for the purpose of slice doubling in MR and CT images. However,
the effects of these techniques on the geometrical transformation of images from these and
other medical image modalities were not investigated. The same holds for the studies of
Schreiner et al. [52] and Chuang [5], in which interpolation techniques were compared for
the purpose of generating maximum intensity projections (MIPs) from MRA data, and
surface rendering, respectively. Finally, we mention our recent study [33], in which we an-
alyzed the effects of several piecewise polynomial interpolation kernels on the geometrical
transformation of images. However, no medical images were included in that study.

The purpose of this paper is to present the results of an elaborate evaluation, in which
we quantitatively studied the performance of a large number of interpolation methods when
using them to apply geometrical transformations to images from a wide variety of medical
imaging modalities. The results of this evaluation are important for the tasks of e.g. mono-
and multimodality medical image registration: the use of optimal interpolation methods
minimizes the loss of information caused by the transformation of images. In order to limit
the size of this work, we considered only rigid transformations, in particular rotations and
translations. We also restricted ourselves to convolution-based interpolation techniques.
Although recent developments have resulted in new, fundamentally different interpolation
techniques, such as shape- or morphology-based methods [10, 12, 17–19, 43], or Fourier-
based methods, such as voxel-shift interpolation or, equivalently, zero-filled interpolation
[8,9,21,25], the vast majority of interpolation techniques used in medical image registration
are convolution-based techniques. The reason for this is probably that these techniques
are less complex than shape-based techniques. That is to say, they are easier to implement
and require no—or at least considerably less—preprocessing time. Furthermore, compared
to Fourier-based techniques, they are better suited for local interpolation problems, such
as those occurring in registration based on control points. To the best of our knowledge,
an evaluation of convolution-based interpolation techniques of the magnitude of the one
described in this paper has not been published before.

This paper is organized as follows. First, in Section 2, we provide the necessary theo-
retical background information and conclude that convolution-based interpolation requires
the use of what we call sinc-approximating kernels. Next, the sinc-approximating kernels
incorporated in this study are presented and discussed briefly in Section 3. The evaluation
strategy and the results are described in Section 4. Both are discussed in more detail in
Section 5. Finally, concluding remarks are made in Section 6.

2 Convolution-Based Interpolation

In general, a digital N -dimensional (ND) real-valued image Is is the result of a number
of local measurements (observations) of a physical source field, or a number of evaluations
of a mathematical function describing some synthetic object or scene. Continuous mea-
surements or evaluations would have resulted in an image I(x), x = (x1, . . . , xN ) ∈ R

N .
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In digital image processing, the only available information about I is the set of samples
Is(p), p = (p1, . . . , pN ) ∈ P , where P is usually a Cartesian grid Z(∆1) × · · · × Z(∆N ),
with ∆i, i = 1, . . . ,N , denoting the inter-sample distances in each dimension. However, it
is frequently desired to know the image value I at a position x /∈ P in a certain region of
interest X ⊂ R

N , while resampling of the original field or function is not possible since it
is no longer available. Under these circumstances, it is required to reconstruct the image
I(x), x ∈ X, from its samples Is(p) in that region by means of interpolation.

From the Whittaker-Shannon sampling theorem [23, 36, 53, 59, 60] it follows that re-
construction of a continuous ND image, I, is possible in those cases where the sampling
frequencies Fsi satisfied the Nyquist criterion:1 Fsi > 2Fmi , ∀ i = 1, 2, . . . ,N , where Fmi

is the highest frequency in the i-th dimension of the original image I. To this end, the
sampled image Is must be convolved with a filter having the following Fourier spectrum:

H̃(f) =

{
κ, if |fi| 6 1

2Fsi , ∀ i = 1, . . . ,N,

0, otherwise,
(1)

where f = (f1, . . . , fN ) ∈ R
N denotes ND frequency, and κ =

∏N
i=1 F−1

si
. By using

this ND box-filter, the continuous image I and its sampled version Is are related by:
Ĩ(f) = Ĩs(f)H̃(f), where Ĩ and Ĩs are the Fourier transforms of I and Is, respectively.
It can easily be verified that, since the ND box-filter can be written as a product of N
one-dimensional (1D) box-filters, ND image reconstruction in the spatial domain can be
carried out by N successive 1D convolutions:

I(x) = (. . . ((Is(p) ∗ h(x1)) ∗ h(x2)) ∗ . . . ) ∗ h(xN ), (2)

where the convolution kernel h : R → R is the inverse Fourier transform of the 1D box-
filter. By assuming unit distance between the grid points,2 this kernel can be derived to
be the well-known sinc function:

h(x) = sinc(x) , sin(πx)
πx

. (3)

Although the sinc function is the theoretically optimal kernel for convolution-based
interpolation of originally band-limited images, it is not the ideal kernel in most practical
situations. First of all, since the objects that are being imaged have finite spatial support,
the resulting images cannot be strictly band-limited. This implies that, in practice, it is
not possible for the sampling frequencies to satisfy the Nyquist criterion. Consequently, it
is impossible to retrieve the original images exactly from the resulting samples by means
of sinc interpolation. Another problem of sinc interpolation is the fact that, since the sinc
function has infinite support, (2) cannot be computed in practice, except in the case of
periodic images [46], which are not likely to occur in medical imaging. Furthermore, inter-
polation by means of a band-limiting convolution kernel may result in Gibbs phenomena,
which are very disturbing in images.

1It must be pointed out that in those cases where, apart from the original signal I(x), also the deriva-
tives ∂kI(x)/(∂xi)

k, ∀k = 1, 2, . . . , K and ∀i = 1, 2, . . . , N are sampled, it is sufficient for the sampling
frequencies Fsi to satisfy Fsi > 2Fmi/(K + 1), as was first remarked by Shannon [53]. Although this
version of the theorem may be of interest in specific application areas, it is not of practical importance
in medical imaging since, in most cases, samples of the derivatives of the original image are not available.
Therefore, this issue will not be considered further in this paper.

2This is not a restriction; any function I(x1, . . . , xN), xi ∈ Z(∆i), can be reparameterized so as to end
up with a function I(x1, . . . , xN), xi ∈ Z. For example, spatial or temporal quantities may be expressed
in pixels instead of millimeters or seconds.
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For convolution-based interpolation, the only solution to these problems is to choose
an alternative convolution kernel. However, in order for any convolution kernel to actu-
ally interpolate the given samples, it must satisfy the following requirements, which are
ultimately satisfied by the sinc function:

h(x) =

{
1, if x = 0,

0, if x ∈ Z, x 6= 0.
(4)

In this paper, we will refer to kernels satisfying (4) as sinc-approximating kernels, even
though there exist infinitely many kernels that satisfy these requirements but do not
necessarily “resemble” the sinc function.

3 Sinc-Approximating Kernels

In this section, we briefly describe the sinc-approximating kernels incorporated in the
evaluation. These include the nearest-neighbor and linear interpolation kernel, as well
as the Lagrange, generalized convolution, cardinal spline, and a large number of win-
dowed sinc kernels. Since the purpose of the research described in this paper was to
quantitatively evaluate the relative performance of these kernels for the specific task
of applying geometrical transformations to medical images, we will not discuss their
application-independent spatial and spectral properties in great detail in this section.
For more in-depth discussions of these particular properties, we refer to numerous other
sources [28–30,32,33,35,40,41,47, 61].

3.1 Nearest-Neighbor and Linear Interpolation Kernel

The simplest and computationally cheapest approach to obtain a sinc-approximating ker-
nel is to model the sinc function by piecewise zeroth- or first-degree polynomials, resulting
in the nearest-neighbor and linear interpolation kernel, respectively defined as

hNN(x) =

{
1, if − 1

2 6 x < 1
2 ,

0, otherwise,
(5)

and

hLin(x) =

{
1 − |x|, if 0 6 |x| < 1,

0, if 1 6 |x|. (6)

As can be concluded from recent literature, the latter is still the most frequently used
kernel in a wide variety of application areas [11].

3.2 Lagrange Interpolation Kernels

To obtain higher-order interpolants, one possibility is to use Lagrange interpolation. With
this approach, the degree of the polynomials is directly determined by the number of
samples incorporated in the computations, and vice versa. When using Lagrange central
interpolation, an nth-degree interpolant is obtained by evaluating the following sum:

kmax∑
k=kmin

Is(pk)Ln
k(x), (7)
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where kmin = −bn/2c, kmax = dn/2e, pk = (p0 + k), p0 = bxc, x ∈ R, and Ln
k are the so

called Lagrange coefficients, defined by

Ln
k(x) ,

kmax∏
i=kmin

i6=k

(x − pi)
(pk − pi)

. (8)

As shown by Schafer & Rabiner [45], the Lagrange central interpolation formula (7)
can be rewritten in the form of a convolution:

∞∑
k=−∞

Is(pk)hLn(x − pk), (9)

where hLn is the nth-degree Lagrange central interpolation kernel. The explicit form of this
kernel can be obtained by varying x within a given interval, while computing hLn(x−pk) =
Ln

k(x) for all k ∈ [kmin, kmax] ⊂ Z, and by defining it to be zero for all other values of k.
Contrary to a claim of Schafer & Rabiner [45], it is possible to derive symmetrical even-
degree Lagrange kernels (see e.g. Schaum [47]). In the evaluation we included the quadratic
(n = 2), cubic (n = 3), quartic (n = 4), quintic (n = 5), sextic (n = 6), septic (n = 7),
octic (n = 8) and nonic (n = 9) kernel. It can be shown that for n → ∞, the Lagrange
central interpolation kernel converges to the sinc function [22,32].

3.3 Generalized Convolution Kernels

The symmetrical piecewise polynomial kernels described in the previous subsections all
result in an interpolant that is at most an element of C0. In particular applications, it
may be desirable to use smoother interpolation kernels, which allow for the computation
of higher-order derivatives of the interpolant. In this subsection we describe a class of
smooth piecewise polynomial kernels that contains important special cases that are well
known in the literature.

In general, piecewise nth-degree polynomial kernels can be written in the form:

hPn(x) =




n∑
i=0

aij |x|i, if j − ξ 6 |x| < j + 1 − ξ,

0, if m 6 |x|,
(10)

where n > 1, ξ = 1/2 for n even and ξ = 0 for n odd, j = 0, 1, . . . ,m + ξ − 1, and the
parameter m determines the spatial support of the kernel. In the evaluation, we restricted
ourselves to the class of kernels for which n and m are related by n = 2m − 1. This is a
rather broad class, which includes the linear interpolation kernel (6) and all of the Lagrange
interpolation kernels described in the previous subsection. It also includes the quadratic
piecewise polynomial kernel due to Dodgson [7]. In the remainder of this subsection we
concentrate on a family of odd-degree convolution kernels that are at least C1.

The (n + 1)m coefficients aij of the polynomials in (10) can be solved by imposing
constraints on the shape of the kernel. The first and most important constraints were
already given in (4). In order for the resulting interpolant to have continuous derivatives,
it is also required that h(l)(x) is continuous at |x| = 0, 1, 2, . . . ,m, where the superscript
(l) denotes the lth-order derivative. It can be shown [33] that, given any odd degree n > 3,
the maximum allowable value for l that will not result in an over-constrained problem is
n−2, in which case the total number of equations to be solved is (n+1)m−1. This implies
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Degree ας α∼ α[

n = 3 −1 −3
4 −1

2

n = 5 11
96

1
13

3
64

n = 7 − 1027
452574 − 3133

2275008 − 71
83232

n = 9 34814699
2509872453120

17671607
2324998440576

3829
788235264

Table 1. Values of the free parameter α for the cubic (n = 3), quintic (n = 5), septic
(n = 7), and nonic (n = 9) convolution kernels defined in Section 3.3, resulting from the
slope constraint (ας), continuity constraint (α∼), and flatness constraint (α[), respectively.

that the kernels can be expressed in terms of a free parameter, which we denote by α. In
order to obtain a unique value for α, one additional constraint needs to be imposed. In
this paper, we used the following constraints: (i) the slope constraint [44], which implies
that the slope of the kernel is constrained in such a way that it equals the slope of the
sinc function at x = 1; (ii) the continuity constraint [54], which implies that the kernel
is constrained in such a way that its (n − 1)th-order derivative is continuous at x = 1;
(iii) the flatness constraint [33, 40], which implies that the frequency spectrum H̃(f) of
the kernel is required to be flat at f = 0. It can be shown that the latter constraint yields
the mathematically most precise interpolant, in the sense that the Taylor series expansion
agrees in as many terms as possible with the original signal [24, 31]. Regardless of the
choice for the additional constraint, the resulting kernel is an element of Cn−2.

A well-known member of this class of piecewise nth-degree polynomial kernels is the cu-
bic convolution kernel [24,40,44,54]. In fact, the aforementioned constraints were adopted
from the literature on cubic convolution. In the literature on visualization and computer
graphics, the cubic convolution kernel resulting from the flatness constraint is also known
as the Catmull-Rom spline [4] and the modified cubic spline [16], and is sometimes erro-
neously referred to as the cardinal cubic spline [34,35].

By analogy with cubic convolution, the kernels from this class of piecewise nth-degree
polynomials are referred to as generalized convolution kernels in this paper. Apart from
the quadratic (n = 2) and cubic (n = 3) convolution kernel, we also included the quintic
(n = 5), septic (n = 7), and nonic (n = 9) convolution kernel in the evaluation. The
corresponding values of the free parameter α resulting from the aforementioned constraints,
are given in Table 1.

3.4 Cardinal Spline Kernels

An alternative approach to piecewise polynomial interpolation is spline interpolation, orig-
inally proposed by Schoenberg [48, 49], which involves the use of so called B-splines, re-
cursively obtained by auto-convolution of a rectangular pulse (equal to the zeroth-degree
or nearest-neighbor kernel). The explicit form of an nth-degree B-spline reads

βn(x) =
1
n!

n+1∑
i=0

(
n + 1

i

)
(−1)i

(
x − i +

n + 1
2

)n

+

, (11)
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with

(x)n+ =

{
xn, if x > 0,

0, if x < 0.
(12)

Since βn(x) > 0, ∀n ∈ N, ∀x ∈ R, interpolation by means of B-splines requires
preprocessing of the raw image data. This can be done either by matrix manipulations
[20,27], or by means of recursive filtering techniques [55–57], the latter of which are easier
to implement and computationally much more efficient. When using the latter approach,
nth-degree spline interpolation is carried out by evaluating the following expression:

∞∑
k=−∞

((bn)−1 ∗ Is)(k)βn(x − k), (13)

where (bn)−1 denotes the recursive prefilter, also known as the direct B-spline filter [55–57].
Note that the resulting interpolant is an element of Cn−1.

Although it is never explicitly implemented this way, (13) can be rewritten so as to
obtain the implicit interpolation kernel

hSn(x) =
∞∑

k=−∞
(bn)−1(k)βn(x − k), (14)

which is known as the cardinal spline of degree n. We note that this cardinal spline satisfies
the requirements of (4). We also note that for n → ∞, the cardinal spline converges to the
sinc function [1, 50]. For further details regarding the theoretical and implementational
aspects of B-spline interpolation, we refer to Unser et al. [56,57].

In the evaluation described in this paper, we included quadratic (n = 2), cubic (n = 3),
quartic (n = 4), quintic (n = 5), sextic (n = 6), septic (n = 7), octic (n = 8), and nonic
(n = 9) spline interpolation, implemented by using (13). Notice that the corresponding
B-spline kernels are piecewise nth-degree polynomial kernels that are non-zero only in the
interval (−m,m), where n and m are related by n = 2m− 1, similar to the Lagrange and
generalized convolution kernels.

3.5 Windowed Sinc Kernels

A fundamentally different approach to obtain a sinc-approximating kernel is to multiply
the sinc function, defined in (3), with a window function of limited spatial support:

h(x) = ω(x)sinc(x), (15)

with

ω(x) =

{
w(x), if 0 6 |x| < m,

0, if m 6 |x|, (16)

where ω : R → R is the window function, and w : R → R determines the shape of the
window in the interval (−m,m), with m ∈ N, m 6= 0.

Window functions are well known in digital filter design [14, 26, 37], where they are
applied in order to reduce the Gibbs phenomena which appear when reducing the band-
width of a signal, and also in spectroscopy and spectrometry [15], where they are known as
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Window Definition

Bartlett wBar , 1 − |x|
m

Blackman wBla , 0.42 + 0.50 cos
(

πx
m

)
+ 0.08 cos

(
2πx
m

)
Blackman-Harris (3-term) wBH3 , 0.42323 + 0.49755 cos

(
πx
m

)
+ 0.07922 cos

(
2πx
m

)
Blackman-Harris (4-term) wBH4 , 0.35875 + 0.48829 cos

(
πx
m

)
+

0.14128 cos
(

2πx
m

)
+ 0.01168 cos

(
3πx
m

)
Bohman wBoh ,

(
1 − |x|

m

)
cos

(
πx
m

)
+ 1

π sin
(

π|x|
m

)
Cosine wCos , cos

(
πx
2m

)
Gaussian wGau , exp

(
− 1

2

(
α x

m

)2
)

Hamming wHam , 0.54 + 0.46 cos
(

πx
m

)
Hann wHan , 0.5 + 0.5 cos

(
πx
m

)
Kaiser wKai , I0(β)

I0(α) , β=α
q

1−( x
m )2

Lanczos wLan , sinc
(

πx
m

)
Rectangular wRec , 1

Welch wWel , 1 − (
x
m

)2

Table 2. Window functions and their definitions. In the definition of the Kaiser window,
α ∈ R

+ is a free parameter, for which we used values of 5.0, 6.0, 7.0, and 8.0. I0 is
the zeroth-order modified Bessel function of the first kind, which can be approximated
accurately by using its series expansion [15, 61]. For the free parameter α ∈ R

+ in the
definition of the Gaussian window we used values of 2.5, 3.0, 3.5, and 4.0.

apodization functions and are used to window spatial or temporal data prior to spectral
analysis in order reduce spectral leakage and the loss of resolution. In the quantita-
tive evaluation described in this paper we used the following windows: Bartlett, Black-
man, Blackman-Harris (both three- and four-term), Bohman, Cosine, Gaussian, Hamming,
Hann, Kaiser, Lanczos, Rectangular, and Welch. The window functions and their defini-
tions are given in Table 2. For more elaborate discussions on the spectral properties of
these window functions, we refer to Harris [15] or Wolberg [61].

4 Quantitative Evaluation

The sinc-approximating kernels presented in the previous section were quantitatively eval-
uated by using them to apply several geometrical transformations to a variety of medical
test-images, and by computing figures of merit (FOMs) based on the grey-value differences
between the transformed images and their corresponding reference images. The computa-
tional cost of these kernels was also determined. In this section we present the evaluation
strategy and the results.
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4.1 Evaluation Strategy

The medical images used in the evaluation were obtained from 3D brain datasets of dif-
ferent modalities, viz., computed tomography (CT), PD-, T1-, and T2-weighted magnetic
resonance imaging (MRI), positron emission tomography (PET), single photon emission
computed tomography (SPECT), and 3D Rotational Angiography (3DRA), as well as
from 2D cerebral X-ray angiography (XRA) image sequences. From every subset (eight in
total), we selected five datasets. The five CT images were of size 512 × 512 times 28, 28,
29, 30, and 33 voxels, respectively, all with a voxel size of 0.65×0.65×4.0 mm3. The PD-,
T1-, and T2-weighted MR images (15 in total) were all of size 256× 256× 26 voxels, with
a voxel size of 1.25 × 1.25 × 4.0 mm3. The five PET images were of size 128 × 128 × 15
voxels, one with a voxel size of 1.94 × 1.94 × 8.0 mm3, and the others with a voxel size of
2.59 × 2.59 × 8.0 mm3. The five SPECT images were of size 64 × 64 times 30, 34, 36, 38,
and 40 voxels, respectively, all with a voxel size of 3.91 × 3.91 × 3.91 mm3. The 3DRA
images were all of size 128 × 128 × 128 voxels, with a voxel size of 0.6 × 0.6 × 0.6 mm3.
Finally, the five 2D XRA images were all of size 512 × 512 pixels. In order to be able to
study the performance of the interpolation kernels in different slice directions, we selected,
for each of the 3D images, one transversal (axial) and one sagittal slice. This resulted in
a total of 75 different 2D test-images (see Figure 1 for examples).

The test-images were subjected to several geometrical transformations. As explained
in the introduction, we considered only rotations and subpixel translations, as these are the
most frequently required transformations in mono- or multimodality registration problems.
In the rotation experiments, the 2D test-images were successively rotated over 0.7◦, 3.2◦,
6.5◦, 9.3◦, 12.1◦, 15.2◦, 18.4◦, 21.3◦, 23.7◦, 26.6◦, 29.8◦, 32.9◦, 35.7◦, 38.5◦, 41.8◦, and
44.3◦, which adds up to a total of 360◦. We note that for every test-image, these 2D
transformations were carried out in the plane of the image. The interpolation errors made
in the transversal and sagittal slices are representative for those resulting from a rotation
of the entire 3D dataset around its z- and x-axis, respectively. In the subpixel translation
experiments, the test-images were successively shifted over 0.01, 0.04, 0.07, 0.11, 0.15,
0.18, 0.21, 0.24, 0.26, 0.29, 0.32, 0.35, 0.39, 0.43, 0.46, and 0.49 pixels, which adds up to a
total of 4.00 pixels. Similar to the rotations, the subpixel translations were carried out in
the plane of the test-image. Notice, however, that these are 1D transformations. For the
transversal slices, these transformations were carried out in the x-direction, while for the
sagittal slices they were carried out in the direction corresponding to the through-plane
direction in the original 3D dataset. The resulting interpolation errors are representative
for those resulting from the application of subpixel translations to the entire 3D dataset
in these same directions.

For every test-image, the experiments were repeated for all interpolation kernels. Of
the types described in Section 3, we used all kernels with a spatial support equal to or
less than 10 grid intervals (m 6 5), which amounts to a total of 126 kernels (viz., the
nearest-neighbor and linear interpolation kernel, the quadratic convolution kernel, the
cubic, quintic, septic, and nonic convolution kernel (using three different values for the
free parameter α), the quadratic, cubic, quartic, quintic, sextic, septic, octic, and nonic
Lagrange and spline interpolation kernels, and finally 13 different windowed sinc kernels
(using five settings for m), two of which have a free parameter, for which we used four
different values (see Table 2 for details)). We note that in order to avoid border problems,
all test-images were mirrored around the borders in each dimension.

For every combination of test-image, experiment (rotation or translation), and inter-
polation kernel, the cumulative interpolation errors in the resulting processed image were
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Figure 1. Examples of the medical test-images used in the experiments described in
Section 4. Top row (left-to-right): a transversal slice of a 3D CT, MR-PD, MR-T1, and
MR-T2 dataset, respectively. Second row: sagittal slices of the corresponding datasets.
Third row: a transversal slice of a PET, SPECT, and 3DRA dataset, and a single frame
from an XRA image sequence, respectively. Last row: sagittal slices of the corresponding
datasets. Note that for display purposes, the images of the sagittal slices of the 3D datasets
shown in this figure were scaled so as to correct for the voxel anisotropy.

determined. Since in these experiments the grid points of the processed images coincided
with those of the corresponding original images, a gold standard was available: for the
rotation experiments, the reference images were simply the original images, and for the
translation experiments, the reference images were obtained by translating the original im-
ages by four pixels (which requires no interpolation). The errors were summarized in two
figures of merit (FOMs): the root-mean-square error (RMSE) and the root-peak-square
error (RPSE). To avoid quantization errors, all computations were carried out with double
precision floating-point numbers (12 significant decimals).

Finally, the relative computational cost of all interpolation kernels was assessed by
carrying out a timing experiment, in which a synthetic 3D test image of size 128×128×128
voxels was translated over (γ, γ, γ) voxels (where 0 < γ < 1 was an arbitrary, but fixed
offset) by using non-separated 3D interpolation operations. For this timing experiment,
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special attention was paid to computationally optimal implementation of each individual
interpolation approach.

4.2 Results

The computation of two FOMs for all processed images, resulting from the application of
126 different kernels to perform two types of transformations on 75 different test images,
resulted in a total of 37800 error figures. In order to be able to present these results in a
compact form, we first make some general observations.

In many applications, the important issue is not just accuracy, but the trade-off be-
tween accuracy and computational cost. In order to get an impression of the performance
of all interpolation kernels in these terms, scatter plots were generated. To this end, the
five error figures (either RMSEs or RPSEs) resulting from every kernel in a given experi-
ment (either rotation or translation) applied to the slices (either transversal or sagittal) of
a given group of five datasets from any of the eight different modalities were averaged. To
correct for possible intrinsic differences in the dynamic range of grey values between the
images within a group of five, the individual error figures were normalized with respect to
the dynamic range of the corresponding image before being averaged.

It was observed that regardless of image modality (CT, MRI, PET, SPECT, 3DRA,
XRA), slice direction (transversal, sagittal), type of experiment (rotation, translation), or
FOM (RMSE, RPSE), spline interpolation offered the best trade-off between accuracy and
computational cost. That is to say, none of the other approaches was more accurate and at
the same time computationally cheaper. Scatter plots resulting from several experiments
carried out on CT data are shown in Figure 2. As can easily be seen from these plots, the
results of spline interpolation constitute a “lower boundary” in all cases. The same was
found for all other modalities.

It is important to note that in the timing experiments, kernel values were determined
by exact computations during convolution. In practice, interpolation operations can be
accelerated by using look-up tables of densely sampled, precomputed kernel values, as has
been pointed out by e.g. Wolberg [61]. In principle, the additional errors due to the spatial
quantization of a kernel can be reduced to any level simply by increasing the density of
kernel samples. When using this approach, the computational cost of convolution kernels is
determined solely by their spatial support. This implies that although spline interpolation
seems the best approach in the case of exact computations, it does not necessarily have
to be so when using look-up tables. Therefore it makes sense to mutually compare the
accuracy of interpolation approaches of which the corresponding convolution kernels have
equal spatial support.

To this end, the averaged, normalized error figures resulting from all kernels in the
different experiments were analyzed separately for m = 1, 2, 3, 4, and 5. In order to limit
the extent of this analysis, kernels with non-integer values of m (the even-degree piecewise
polynomial kernels) were included in the group corresponding to the smallest larger integer
value of m (e.g., the quartic Lagrange central interpolation kernel, for which m = 2.5, was
included in the group of kernels for which m = 3). It was observed that regardless of
image modality, slice direction, type of experiment, or FOM, given the value of m, the
corresponding B-spline kernel performed either comparably to, or considerably better than
all other kernels with the same spatial support. Therefore, we decided to present only the
errors resulting from spline interpolation and to indicate whether or not these errors were
statistically significantly smaller.
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Figure 2. Examples of scatter plots showing interpolation error (ordinates) versus com-
putational cost (abscissae) for the different interpolation kernels applied to CT data. The
label “A/B/C” on top of each plot provides details concerning the results shown, where A
indicates the type of interpolation error (RMSE or RPSE), B indicates the type of exper-
iment (rotation (Rot) or translation (Tra)), and C indicates the type of slice (transversal
(Tr) or sagittal (Sa)) on which the experiment was carried out. Notice that for every kernel
in each plot, the presented FOM is an average of the individual FOMs (expressed as frac-
tions of the dynamic range of grey values) resulting from the five datasets. Also notice that
the computational costs (shown here in seconds per voxel) were obtained from separate
experiments. Open circles indicate the results of spline interpolation, where the left-most
circle corresponds to zeroth-degree and the right-most to ninth-degree spline interpolation.

The averaged, normalized RMSEs and RPSEs introduced by spline interpolation in
the rotation and subpixel translation experiments applied to the test images of different
modalities and slice directions (Slc), either transversal (Tr) or sagittal (Sa), are shown in
Tables 3–6. For every modality, slice direction, type of experiment, and FOM, the nor-
malized error figures resulting from spline interpolation in the five images were compared
pairwise to the figures resulting from all other methods with the same spatial support for
the corresponding convolution kernel. By using a paired t-test [2], the errors resulting
from spline interpolation were found to be statistically significantly smaller (p < 0.05),
under the null hypothesis that the methods should yield similar results, except in those
cases marked by the “?” symbol in Tables 5 and 6.
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Mod Slc n = 1 n = 3 n = 5 n = 7 n = 9

CT Tr 1.30% 0.13% 0.05% 0.04% 0.03%
Sa 5.99% 3.06% 2.43% 2.12% 1.94%

MR-PD Tr 3.23% 1.45% 1.08% 0.90% 0.78%
Sa 6.58% 3.56% 2.82% 2.46% 2.23%

MR-T1 Tr 3.22% 1.48% 1.11% 0.92% 0.80%
Sa 6.59% 3.66% 2.97% 2.63% 2.42%

MR-T2 Tr 3.57% 1.96% 1.54% 1.31% 1.16%
Sa 6.23% 3.84% 3.07% 2.65% 2.39%

PET Tr 1.72% 0.34% 0.25% 0.22% 0.20%
Sa 8.76% 4.16% 3.30% 2.88% 2.62%

SPECT Tr 2.94% 0.33% 0.18% 0.14% 0.12%
Sa 3.39% 0.75% 0.59% 0.50% 0.43%

3DRA Tr 3.52% 2.28% 1.86% 1.61% 1.45%
Sa 3.47% 2.02% 1.61% 1.39% 1.24%

XRA 1.26% 0.61% 0.48% 0.41% 0.37%

Table 3. Averaged, normalized root-mean-square errors (RMSEs) introduced by linear
(n = 1), cubic (n = 3), quintic (n = 5), septic (n = 7), and nonic (n = 9) spline
interpolation in the subpixel translation experiment. See Section 4.2 for details.

Mod Slc n = 1 n = 3 n = 5 n = 7 n = 9

CT Tr 1.72% 0.15% 0.08% 0.07% 0.06%
Sa 6.28% 2.84% 2.16% 1.85% 1.65%

MR-PD Tr 3.90% 1.61% 1.22% 1.07% 0.98%
Sa 7.27% 3.60% 2.84% 2.49% 2.27%

MR-T1 Tr 3.86% 1.68% 1.30% 1.13% 1.04%
Sa 7.26% 3.66% 2.94% 2.62% 2.42%

MR-T2 Tr 4.27% 2.36% 1.94% 1.74% 1.63%
Sa 6.93% 4.05% 3.31% 2.95% 2.73%

PET Tr 2.28% 0.42% 0.32% 0.29% 0.27%
Sa 8.59% 3.62% 2.81% 2.43% 2.19%

SPECT Tr 4.07% 0.40% 0.23% 0.19% 0.17%
Sa 4.96% 0.75% 0.51% 0.41% 0.35%

3DRA Tr 4.00% 2.58% 2.18% 1.99% 1.87%
Sa 4.34% 2.67% 2.24% 2.03% 1.91%

XRA 1.60% 0.79% 0.68% 0.63% 0.61%

Table 4. Averaged, normalized root-mean-square errors (RMSEs) introduced by linear
(n = 1), cubic (n = 3), quintic (n = 5), septic (n = 7), and nonic (n = 9) spline
interpolation in the rotation experiment. See Section 4.2 for details.
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Mod Slc n = 1 n = 3 n = 5 n = 7 n = 9

CT Tr 21.61% 3.86% 1.89% 1.31% ?1.06%
Sa 45.57% 24.71% 19.17% 16.63% 14.73%

MR-PD Tr 42.35% 19.36% 13.27% 10.92% 9.31%
Sa 48.36% 32.67% ?24.90% ?20.16% 16.98%

MR-T1 Tr 44.86% 21.69% 15.59% 12.17% 10.00%
Sa 52.70% 31.93% ?25.75% ?21.71% ?18.92%

MR-T2 Tr 42.66% 22.03% 16.26% 13.23% ?11.11%
Sa 38.58% 27.31% ?20.42% ?16.07% ?14.26%

PET Tr 11.21% 2.38% 1.75% 1.39% 1.16%
Sa 34.94% 18.84% 14.75% 11.82% 10.57%

SPECT Tr 13.91% 2.10% 1.37% 1.02% 0.81%
Sa 22.42% 7.19% 4.57% 3.54% ?2.97%

3DRA Tr 38.77% 19.77% 14.07% ?11.29% ?9.46%
Sa 29.26% 14.11% 9.53% 7.89% 6.89%

XRA 37.75% 20.56% 13.96% ?10.57% ?8.60%

Table 5. Averaged, normalized root-peak-square errors (RPSEs) introduced by linear
(n = 1), cubic (n = 3), quintic (n = 5), septic (n = 7), and nonic (n = 9) spline
interpolation in the subpixel translation experiment. See Section 4.2 for details, including
the meaning of the “?” symbol.

Mod Slc n = 1 n = 3 n = 5 n = 7 n = 9

CT Tr 25.32% 4.23% 2.55% ?2.30% ?2.11%
Sa 46.17% 22.82% 17.49% 14.69% ?12.66%

MR-PD Tr 47.50% 19.13% 14.03% ?12.14% ?11.27%
Sa 51.72% ?33.65% ?26.76% ?22.47% ?19.76%

MR-T1 Tr 47.32% 23.95% ?17.85% ?14.69% ?12.99%
Sa 54.01% 29.45% 24.12% 21.34% ?18.86%

MR-T2 Tr 50.70% ?25.32% 18.51% ?15.69% ?14.07%
Sa 49.75% ?33.51% ?26.55% ?22.13% ?19.63%

PET Tr 14.33% 2.92% 2.36% 2.16% 2.04%
Sa 35.86% ?18.06% 12.82% 10.25% 8.97%

SPECT Tr 18.95% 2.33% 1.72% 1.41% 1.21%
Sa 23.97% ?8.28% 5.37% ?4.18% ?3.49%

3DRA Tr 43.76% ?24.03% ?17.39% 14.35% 13.35%
Sa 41.56% ?25.42% ?20.01% ?17.11% ?15.34%

XRA Tr 53.95% ?36.07% ?28.75% ?24.97% ?22.79%

Table 6. Averaged, normalized root-peak-square errors (RPSEs) introduced by linear
(n = 1), cubic (n = 3), quintic (n = 5), septic (n = 7), and nonic (n = 9) spline
interpolation in the rotation experiment. See Section 4.2 for details, including the meaning
of the “?” symbol.
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5 Discussion

In the image processing literature, several alternative approaches have been proposed for
the evaluation or comparison of the accuracy of interpolation methods. In this section, we
first discuss these approaches and explain why we have chosen the strategy described in
the previous section. We also discuss the results of the current evaluation.

5.1 Discussion of Evaluation Strategies

A frequently used approach to the evaluation of interpolation kernels is to compare the
spatial and spectral properties of these kernels to those of the sinc function, either by
discussing their low-frequency band-pass and the high-frequency suppression capabili-
ties [29, 41], or by using such metrics as “sampling and reconstruction blur” [39, 47],
“smoothing”, “post-aliasing”, or “overshoot” [30], “truncation error”, or “non-sinc er-
ror” [28], to mention but a few. These approaches are based on the fundamental assump-
tion that in all cases, the sinc function is the optimal interpolation kernel. As such, they
provide insight in the theoretical behavior of these kernels as lowpass filters. However,
the conclusions of such evaluations are often not easily translated to specific image pro-
cessing tasks. Alternatively, interpolation kernels may be compared by subjective visual
inspection of image quality, after having used the kernels to perform certain resampling
operations [7, 20, 41, 51, 61], or by analyzing their abilities to reconstruct certain mathe-
matical test-functions [24, 54]. However, given an image processing task, the most useful
evaluation is obtained by applying the kernels to perform that task and to compare the
results to what is considered the gold standard.

In a recently published paper by Grevera & Udupa [11], an elaborate comparison of a
number of well-known scene-based and object-based interpolation methods was presented.
In the evaluation, 3D medical images from different modalities were first subsampled in the
slice-direction with a factor of two. Next, the subsampled images were supersampled with
the same factor in order to restore the original dimensions, where the supersampling was
carried out by using the different interpolation methods. The subsampled-supersampled
images were then compared with their originals using different FOMs. We note that this
evaluation approach was designed to assess the performance of interpolation methods for
a specific task: increasing the number of slices for the purpose of improved 3D object
quantification or visualization. The conclusions of this study can not simply be general-
ized to other interpolation problems, such as those occurring in e.g. image registration.
In addition, two properties of this evaluation strategy are questionable. First, it is known
from Fourier analysis that subsampling introduces aliasing artifacts that are not easily cor-
rected by interpolation. Because of the low spatial resolution, this is especially true for the
slice direction. These aliasing errors may have influenced the results and conclusions. For
example, in some cases the cubic convolution kernel resulting from the flatness constraint—
referred to as the modified cubic spline—performed statistically significantly worse than
linear interpolation, while it is known from many other studies [24,33,38,40,41,61] (includ-
ing the present one) that the former kernel is generally superior. Second, the evaluation
does not assess the performance of entire kernels, but only of a few distinct function values
of these kernels. For example, in the evaluation of the cubic convolution kernel, only the
values at x = −1.5,−0.5, 0.5, 1.5 are taken into consideration. This implies that any other
function that has the same values at these points would have given the same results.

A frequently used alternative approach to study the performance of interpolation ker-
nels for the purpose of applying geometrical transformations, is to apply these transfor-
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mations to a number of test-images, followed by the inverse transformation so as to bring
the images back in their original position [6, 13, 28, 33, 38]. Ideally, the forward-backward
transformed images should be identical to their respective originals, so that a quantita-
tive performance measure can be based on the grey-value differences between the images.
Although this approach may be of value when comparing certain families of interpolation
kernels, its use is limited in the case of a large number of fundamentally different kernels,
since the negative effects of a kernel in the forward transformation may be canceled out
by the backward transformation. This occurs e.g. when employing a nearest-neighbor in-
terpolation scheme in a forward-backward subpixel translation operation. While we know
that this type of interpolation yields very large errors in the forward transformation, the
backward transformed image is nevertheless exactly identical to the original image.

In the research described in this paper, we used an alternative evaluation strategy.
Rather than analyzing the spatial and spectral properties of interpolation kernels compared
to the sinc function, we studied the actual performance of these kernels when applying
geometrical transformations to real medical image data. The strategy is a refined version
of an approach used by Unser et al. [58], who considered rotation over 16 × 22.5◦ = 360◦.
The approach is entirely objective in the sense that it does not involve artificially created
gold standards. It circumvents the aforementioned problems with other approaches: the
test-images are treated at their intrinsic resolution, thereby avoiding additional aliasing
artifacts due to subsampling; furthermore, by taking into consideration a large number
of different rotation angles and translation vectors, the entire shape of a given kernel
contributes to the interpolation errors, not just a limited number of kernel values;3 finally,
only forward transformations are applied in order to avoid cancellation of errors during
intermediate steps.

It must be added that the geometrical transformations used in the experiments were
limited to rotations around and translations along the major axis of the Cartesian grid
in which the given datasets were defined. In the case of the rotation experiments, this
implies that the degree of anisotropy was either minimal (transversal slices) or maximal
(sagittal slices). In the case of the translation experiments, this implies that the inter-
sample distance was either minimal (transversal slices) or maximal (sagittal slices). Since
the effects observed in the experiments applied to the transversal and sagittal slices were
consistent, we expect that experiments involving rotations around or translations along
oblique axes (in which the observed effects would be combined) would have led to the
same conclusions. Verification of this expectation requires further experimentation.

5.2 Discussion of the Results

As follows from the results presented in Section 4.2, the RMSEs introduced by spline inter-
polation are statistically significantly smaller than those caused by all other convolution-
based interpolation approaches, regardless of image modality (CT, MRI, PET, SPECT,
3DRA, or XRA), slice direction (transversal or sagittal), or type of transformation (ro-

3We note that in this evaluation we have considered only subpixel translations over less than 0.5 pixels
and rotation angles smaller than 45◦. We claim that this is sufficient to demonstrate the performance of
the interpolation kernels. It can easily be seen that when performing a translation over k + γ pixels, with
k ∈ Z and γ ∈ [0, 1) ⊂ R, the required kernel values are determined by γ, not by k. Furthermore, due to
the symmetry of all kernels, a translation over 0.5 6 γ < 1.0 pixels involves the same kernel values as a
translation over 1.0 − γ pixels. Similarly, when rotating an image around its center over 90κ + ϕ degrees,
with κ ∈ Z and ϕ ∈ [0, 90) ⊂ R, the required kernel values are determined by ϕ, not by κ, and due to
the symmetry of the operation, a rotation over 45 6 ϕ < 90 degrees involves the same kernel values as a
rotation over 90 − ϕ degrees.
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Figure 3. Visual impression of the errors resulting from the rotation experiment car-
ried out on a transversal slice of a CT image (top left), when using nearest-neighbor
(zeroth-degree spline) interpolation (top middle), linear (first-degree spline) interpolation
(top right), and cubic (bottom left), quintic (bottom middle), and septic (bottom right)
spline interpolation.

tation or translation). However, this was not always the case for the RPSEs. Although
according to this FOM, linear interpolation (first-degree spline interpolation) performed
statistically significantly better than all other kernels with a spatial support of two grid
intervals (m = 1), cubic spline interpolation did not perform statistically significantly bet-
ter than cubic convolution and cubic Lagrange interpolation in the cases marked by “?”
in Tables 5 and 6 (“n = 3” columns). In the higher-degree non-significant cases, especially
the Welch, Cosine, Kaiser, and Lanczos windowed sinc kernels (in that order) performed
comparably to spline interpolation. However, since these alternative methods did also not
perform statistically significantly better than spline interpolation, nothing is lost by using
spline interpolation in these cases.

An explanation for the superiority of spline interpolation in the vast majority of cases
may be obtained from approximation theory: it has been shown recently [3] that spline
interpolation has the highest order of approximation. This implies that, given the samples
of any original input image, the interpolated image resulting from splines converges most
rapidly to the original image as the inter-sample distance vanishes. Although there do ex-
ist alternative interpolation kernels with this property, splines have the unique additional
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Figure 4. Visual impression of the errors resulting from the rotation experiment carried
out on a transversal slice of a T1-weighted MR image (top left), when using nearest-
neighbor or zeroth-degree spline interpolation (top middle), linear or first-degree spline
interpolation (top right), and cubic (bottom left), quintic (bottom middle), and septic
(bottom right) spline interpolation.

property that they also yield the smoothest interpolant: in contrast with all other ap-
proaches considered in this paper, nth-degree spline interpolation results in an interpolant
that is n − 1 times continuously differentiable.

In order to give an impression of the errors made by spline interpolation of different
degrees, the results of the rotation experiment for a transversal slice of a CT and a T1-
weighted MRI dataset, as well as a sagittal slice of a PET dataset, are shown in Figures 3,
4, and 5, respectively. (Notice that in the latter figure, the displayed images are scaled so
as to visually correct for the voxel anisotropy.) As was to be expected from the figures
in Tables 3–6, the interpolation errors in the CT image are smallest. We note that the
errors made in the rotation and subpixel translation experiments are cumulative errors.
That is, they are considerably larger than the errors in practical interpolation problems
of the same nature; one usually does not perform e.g. rotation by successive intermediate
rotations. Nevertheless, the experiments give a representative impression of the average
relative performance of the different interpolation kernels.

As can be observed from Tables 3 and 5, the errors in the through-plane direction
can be much larger than those made in the in-plane direction in images with a relatively
large voxel anisotropy (in our experiments notably the CT, MR, and PET images). This
can be explained from sampling theory: the lower the sampling frequency, the more pre-
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Figure 5. Visual impression of the errors resulting from the rotation experiment car-
ried out on a sagittal slice of a PET image (top left), when using nearest-neighbor or
zeroth-degree spline interpolation (top middle), linear or first-degree spline interpolation
(top right), and cubic (bottom left), quintic (bottom middle), and septic (bottom right)
spline interpolation.

and post-aliasing artifacts can be expected to be introduced by sampling and non-ideal
reconstruction operations. The results indicate that in order to reduce interpolation errors
when performing 3D geometrical transformations, it is inefficient to choose a larger (more
expensive) kernel for the in-plane interpolations, if nothing is done to considerably im-
prove the through-plane interpolations. To give an example, for the CT and PET images
considered in this evaluation, about ninth-degree spline interpolation was required in the
through-plane direction in order to have similar RMSEs as linear interpolation in the in-
plane direction (Tables 3 and 4). For the other modalities, the difference between in-plane
and through-plane interpolation errors was less drastic, due to the smaller voxel anisotropy.

Finally, a note concerning the computational cost of spline interpolation. As explained
in Section 3.4, interpolation by means of B-spline convolution kernels requires prefiltering
of the raw image data for all degrees n > 2. Although the timing experiments indicated
that spline interpolation (including the prefiltering) is computationally cheaper than win-
dowed sinc interpolation, it is somewhat more expensive than the alternative piecewise
polynomial schemes. When using look-up tables, as discussed in Section 4.2, the required
prefiltering causes spline interpolation to be the computationally most expensive approach.
However, since the prefiltering operations can always be carried out separably, their com-
putational cost becomes relatively small in higher-dimensional interpolation problems.
Moreover, in applications where many transformations have to be applied to the original
image, such as in registration and visualization, the prefiltering needs to be carried out
only once, so that the additional cost becomes negligible. Therefore, in the plots shown
in Figure 2, only the computational costs of the actual convolution operations were used.

6 Conclusions

In this paper we presented the results of a quantitative evaluation of sinc-approxima-
ting kernels for convolution-based medical image interpolation. The evaluation comprised
the application of geometrical transformations (rotations and subpixel translations) to
medical images from different modalities (CT, MRI, PET, SPECT, 3DRA, and XRA),
by using the different interpolation kernels. The interpolation errors in the resulting
transformed images were analyzed by computing the root-mean-square and the root-peak-
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square deviation from the corresponding reference images. The evaluation was designed
in such a way that the original images could be used as references. In total, 126 different
kernels were evaluated. These included piecewise polynomial kernels (nearest-neighbor,
linear, Lagrange, generalized convolution, and interpolating B-spline kernels) and a large
number of windowed sinc kernels (Bartlett, Blackman, Blackman-Harris, Bohman, Cosine,
Gaussian, Hamming, Hann, Kaiser, Lanczos, Rectangular, and Welch windows), with
spatial supports ranging from two to ten grid intervals in each dimension.

The combined results of accuracy and timing experiments showed that, regardless of
image modality, slice direction (transversal or sagittal), or type of transformation (rota-
tion or translation), spline interpolation offers the best trade-off between accuracy and
computational cost. In addition, pairwise comparisons of the error figures resulting from
kernels with equal spatial support indicated that spline interpolation is statistically signif-
icantly better in the vast majority of cases. The results also indicated that, especially in
images with a relatively large voxel anisotropy (in our experiments notably the CT, MR,
and PET images), the errors caused by interpolation in the through-plane direction are
considerable larger than those resulting from interpolation in the in-plane direction. This
implies that in general, it requires higher-degree spline interpolation in the through-plane
direction in order to have similar errors as linear interpolation in the in-plane direction.

We conclude that spline interpolation is to be preferred over all other methods. Cubic
spline interpolation results in a considerable (28%-91%) reduction of interpolation errors
as compared to linear interpolation (first-degree spline interpolation). Even better results
(66%-98% reduction) are obtained with higher-degree spline interpolation, albeit at an
increase in computational cost.
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