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Abstract
A method is presented to identify and quantify hypoxia in human head-and-
neck tumours based on dynamic [18F]-Fmiso PET patient data, using a model
for the tracer transport. A compartmental model was developed, inspired by
recent immunohistochemical investigations with the tracer pimonidazole. In
order to take the trapping of the tracer and the diffusion in interstitial space
into account, the kinetic model consists of two compartments and a specific
input function. This voxel-based data analysis allows us to decompose the
time-activity curves (TACs) into their perfusion, diffusion and hypoxia-induced
retention components. This characterization ranges from well perfused tumours
over diffusion limited hypoxia to strong hypoxia and necrosis. The overall
shape of the TAC and the model parameters may point at the structural
architecture of the tissue sample. The model addresses the two main problems
associated with hypoxia imaging with PET. Firstly, the hypoxic areas are
spatially separated from well perfused vessels, causing long diffusion times
of the tracer. Secondly, tracer uptake occurs only in viable hypoxic cells,
which constitute only a small subpopulation in the presence of necrosis. The
resulting parameters such as the concentration of hypoxic cells and the perfusion
are displayed in parameter plots (‘hypoxia map’). Quantification of hypoxia
performed with the presented kinetic model is more reliable than a criterion
based on static standardized uptake values (SUV) at an early timepoint, because
severely hypoxic/necrotic tissues show low uptake and are thus overlooked by
SUV threshold identification. The derived independent measures for perfusion
and hypoxia may provide a basis for individually adapted treatment planning.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Hypoxia in tumours, as measured by polarographic Eppendorf pO2 histographs, has been
associated with poor treatment outcome and survival (Nordsmark et al 1996, 2000). Thus, to
measure and quantify hypoxia may be beneficial for patient selection or treatment modification.
Individually adapted treatment strategies to overcome this therapy resistance, such as ARCON
(Kaanders et al 2002) or hypoxia dose painting (Alber et al 2003), appear necessary and
promising.

There have been several attempts to quantify tumour hypoxia with polarographic needle
electrodes (Nordsmark et al 1996, 2000) or with positron emission tomography (PET) by
using hypoxia-specific tracer molecules such as [60Cu]-ATSM (Chao et al 2001), [18F]-
Fluoroerythronitroimidazole (FETNIM) (Lehtiö et al 2004), [18F]-Fluoroazomycin (FAZA)
(Machulla 1999) or [18F]-Fluoromisonidazole (Fmiso) (Koh et al 1992, Rasey et al 1996).

Fmiso binds selectively to macromolecules in hypoxic cells. At low oxygen levels, the
compound is reduced and binds, when reduced by a second electron, covalently to intracellular
macromolecules. In the presence of oxygen, the favoured reaction is the re-oxygenation to the
less reactive parent compound which is freely diffusible and clears from tissue (Laubenbacher
and Schwaiger 2000).

Koh et al (1992) and Rasey et al (1996) developed a strategy for the identification and
quantification of hypoxic tumour areas on the basis of Fmiso PET images. They pointed
out the necessity of very long (2–4 h) examination protocols because of the slow transport
and reaction mechanisms of the tracer molecules. These investigators defined a fractional
hypoxic tumour volume which is the proportion of the tumour area presenting a tumour-to-
blood activity ratio � 1.4 at 2–3 h post injection (p.i.). Their results displayed a highly
variable character of human tumour hypoxia among different tumours and also among regions
within the same tumour. A study by Bentzen et al (2003) reports on an unclear correlation
between Fmiso PET scans and direct oxygen measurements with polarographic needle
electrodes.

Casciari et al (1995) developed a kinetic compartment model for the transport and
metabolism of Fmiso. This model aims to determine the cellular Fmiso reaction rate constant
from time-activity data, which is assumed to reflect the mean local oxygen concentration.
It consists of four compartments with a high number of free parameters. Hence, a certain
number of parameters have to be fixed to increase the robustness of the model. The model is
a classical kinetic model where the different compartments co-exist in the same volume. This
is problematic because it assumes homogeneous oxygen concentration which contradicts the
observation of concentration gradients in a tissue.

Fortunately, the pattern of tracer accumulation in hypoxic tumours can be made visible by
histological investigations with the related compound pimonidazole. Ljungkvist et al (2002)
and Janssen et al (2002, 2004) investigated the structural architecture of hypoxic tumours
with pimonidazole. These studies depict hypoxic islands interspersed throughout the tissue
on length scales between 100 and 500 µm, located in regions far from blood vessels and
including necrotic tissue. A ‘hypoxia signal’ on macroscopic length scales (size of PET
voxels: 4 × 4 × 4.25 mm3) emerges from an irregular heterogeneous distribution of tracer
accumulation on microscopic length scales.

The essential fact that hypoxia exists spatially separated and at any rate far from perfused
vessels was not explicitly taken into account by Casciari et al (1995). Also, it becomes evident
that the total sub-volume which traps the tracer is rather small. These observations are typical
of the problem and serve to make the point that hypoxia-PET imaging with any arbitrary tracer
is more ambiguous and intricate than with tracers with an active transport mechanism and
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Table 1. Table of acquired image frames for each patient (n = 16).

Time p.i. (min) 0–2 2–4 4–15 15–60 120 180 240
Acquisition time 12 × 10 s 8 × 15 s 11 × 60 s 9 × 5 min 1 × 5 min 1 × 8–9 min 1 × 10–12 min

Patient no.
1, 4 × × × × × × ×
3, 5, 7, 9, 10, × × × − × − ×
12, 13, 15
8 × × × − × × ×
11, 16 × × × × × − ×
2, 14 × × × 3 × 5 min × − ×
6 × × × 5 × 5 min × − ×

higher reaction rates, such as FDG, and to justify that some model is required to interpret the
images.

The immunohistochemical studies also revealed large inter- and intra-patient differences
in regard to tumour tissue vasculature. Hypoxia is only a consequence of the irregular geometry
of the tumour vasculature. Therefore, it is essential that the model for the transport of the
tracer from the perfused vessels to the hypoxic cell is general enough to include both the
irregular tumour geometry and the inter-individual tumour heterogeneity.

In the following, a method to quantify hypoxia in tumours based on dynamic [18F]-Fmiso
PET patient data is presented. The kinetic model assumes physical, purely diffusive transport
of the tracer molecule to the hypoxic cell, where it is trapped according to the local oxygen
tension. The application of the model to patient data time-activity curves (TACs) yields the
local concentration of hypoxic sub-volumes in each tumour voxel, allowing us to display the
results in a parameter plot (‘hypoxia map’).

2. Methods and materials

2.1. Patient data

The dynamic PET data in this study were obtained from patients with head-and-neck tumours
who were examined with the following protocol: with the start of the image acquisition, a
tracer activity of A0 � 400 MBq Fmiso was injected. For the first 15–60 min, the PET scanner
(Advance, General Electric, Milwaukee, US) was running in dynamic acquisition mode which
resulted in a total of 31–40 image frames. Additionally, two static images were taken for
all patients 2 and 4 h p.i. and for a few patients also at 3 h p.i. Detailed information about
time points and corresponding acquisition durations for each examined patient (n = 16) are
summarized in table 1.

A decay correction for the decomposition of the radioactive 18F was performed for all
data sets. The raw PET data were stored in three separate data sets, one dynamic set consisting
of 31 image frames and two static data sets with one frame each. In order to implement a
pointwise hypoxia analysis, it was necessary to match these three data sets. The corresponding
rigid body transformation matrix was calculated by applying a mutual information algorithm
(Viola and Wells 1997). This matching procedure reached an accuracy �2 mm in the region
of the tumour and allowed us to determine a TAC for each voxel.
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Figure 1. Compartmental model consisting of a diffusive and an accumulative compartment. The
input function CIn(t) comprises the tracer concentration in the blood and in the interstitial space
close to the vessels.

2.2. Kinetic model

Histochemical studies (Ljungkvist et al 2002, Janssen et al 2002, 2004) found increasing
staining intensities for pimonidazole in addition to a larger quantity of cells accumulating
the tracer molecules far from blood vessels. Typical distances for increased pimonidazole
staining are 100–200 µm. Since there exists no active transport mechanism for pimonidazole
or Fmiso in the interstitium, the transport of the tracer molecules is purely diffusive (Jain
1987). Considering the molecular weight of Fmiso and the distances the molecules have to
travel from the vessel to the hypoxic cell (Jain 1987), the diffusion time will be high compared
to other tracers with active transport mechanisms and shorter diffusion distances (such as e.g.
FDG (Laubenbacher and Schwaiger et al 2000)). The time the marker needs to reach the
hypoxic tissue area far from the blood vessel will be in the order of 100–1000 s, as motivated
in the following.

Although the diffusive transport depends crucially on the tissue geometry, blood vessel
permeability and the interstitial flow and pressure situation, which is obviously unknown, the
bulk diffusion equation (without spatial dependences) for a net flow from a point A to a point
B reads schematically:

∂tCB = D

l2
(CA(t) − CB). (1)

Here D is the diffusion constant, l the distance between points A and B and CA(t) is assumed
to be unaffected by the efflux (infinite supply). The linearity of the diffusion equation allows
us to associate spatially separated sub-volumes with compartments and an approximate linear
reaction rate equation. For a compartmental model, the consequence of this diffusion delay
will be a translation of the spatial separation of blood pool and tracer trapping into a temporal
separation (Hicks et al 1997). With D typically in the order of 10−6 cm2 s−1, and l � 0.01 cm
it follows that k � 10−2 s−1, i.e. typical time scales are >100 s.

Regarding the design of a kinetic model, it is assumed that for all practical purposes
a general two compartment model (see figure 1) will be sufficient to describe the dynamic
Fmiso data4. The model can be motivated by the heuristics that there are essentially three
distinguishable components of the TACs. One, showing rapid concentration changes due to
perfusion and fast diffusion into the interstitial space close to the vessels, represented by the
input function. Another, characterized by slow concentration changes due to long diffusion
times to and from the large inter-vessel spaces of irregular tumours. And a third, describing
the irreversible binding of the tracer. In the following, the compartment describing the freely
diffusive tracer molecules will be referred to as diffusive compartment. The accumulative

4 This is a consequence of the integration of the manifold of various TACs of all the particular sub-volumes in a PET
voxel. If tumours were more homogeneous or the spatial resolution of the scanner better, a chain of compartment
pairs, stratified according to their diffusion time, might be a more appropriate model.
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compartment is linked to the diffusive compartment by a kinetic rate constant that depends on
the partial oxygen pressure.

In contrast to classic compartmental models, the compartments in this model are spatially
separated or overlap only partially (the accumulative compartment corresponds only to those
sub-volumes described by the diffusive compartment which are hypoxic) and the volumes of
the different compartments are not identical. In addition, some of the kinetic constants of this
model are not parameters of a chemical reaction, but reflect purely diffusive transport.

The diffusive compartment is linked to the input function by diffusion rate constants k1

and k2. The accumulative part is only coupled to the diffusive one with the rate constant k3. It
is assumed that the diffusion of unbound reduced Fmiso cannot be discerned on the time scales
of the experiment. This kinetic model is described by the following system of differential
equations:

∂

∂t
CD(t) = k1CIn(t) − (k2 + k3)CD(t) (2)

∂

∂t
CA(t) = k3CD(t). (3)

CD(t) and CA(t) are the basis functions for the diffusive and the accumulative compartments
respectively. They are determined by

CD(t) = e−(k2+k3)t ⊗ k1CIn(t)

= k1

∫ t

0
e−(k2+k3)(t−τ)CIn(τ ) dτ (4)

and

CA(t) = k3 ⊗ CD(t)

= k1k3

k2 + k3

∫ t

0
(1 − e−(k2+k3)(t−τ))CIn(τ ) dτ, (5)

where the ki are the respective rate constants and ⊗ denotes the convolution product. The total
measured PET signal S(t) is given by a linear combination of the basis functions (equations (4)
and (5)) and the input function CIn(t):

S(t) = w0CIn(t) + wDCD(t) + wACA(t)

= w0CIn(t) + wDk1

∫ t

0
e−(k2+k3)(t−τ)CIn(τ ) dτ

+ wA

k1k3

k2 + k3

∫ t

0
(1 − e−(k2+k3)(t−τ))CIn(τ ) dτ. (6)

Here wD and wA are the relative weights of the compartments. They represent the relative
contribution of each compartment to the total signal. The weight parameters correspond, if
properly normalized, to the volume fraction that is occupied by these compartments. Therefore,
wA could also be interpreted as the mean concentration of hypoxic cells in this voxel.

In the complete expression for the total signal S(t) (equation (6)), the rate constant k1

turns out to be only a multiplicative factor to the weight parameters wD and wA. It can
therefore be set constant without loss of generality. Variations of this parameter are absorbed
in w̃D = wDk1 and w̃A. Additionally, the rate constant k2 can be absorbed by substituting
k̃3 = k2 + k3 and w̃A = wAk1k3/k̃3. The final equation for the PET signal reads

S(t) = w0CIn(t) + w̃D

∫ t

0
e−k̃3(t−τ)CIn(τ ) dτ + w̃A

∫ t

0
(1 − e−k̃3(t−τ))CIn(τ ) dτ. (7)

The remaining kinetic model has four open parameters, the weight parameters w0, w̃D

and w̃A in addition to the modified accumulation rate constant k̃3.
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Figure 2. Reference tissue compartment.

2.3. Input function

For head and neck cases, it is difficult to obtain the blood input function directly from the
images. Therefore, we propose the use of a reference tissue model. Normal tissues can be
described by a kinetic model consisting of the blood concentration CIn(t) and a tightly coupled
diffusive compartment, see figure 2. The tracer concentration in the cell layers around a blood
vessel (i.e. the diffusive compartment of the normal tissue model) is denoted with CNT(t).
Therefore, the input function may be extracted from typical normal tissue voxels.

During the first minutes after injection, the image signal is governed by diffusion from
well perfused capillaries into the interstitial space. This will occur in a similar fashion in
both normal tissue and tumour tissue, although the deficient vasculature in tumours may offer
less resistance. In this case, k1 and k2 of the tumour would be greater than in the reference
tissue, but this does not affect the input function, which should be the same as long as the
tracer transition from the vessel into the interstitial space is permeability limited and not
flow limited. Apart from this difference in kinetic parameters, well perfused tumour areas and
normal tissues should behave similarly during the first minutes after injection. This assumption
is corroborated by immunohistochemical investigations (Ljungkvist et al 2002, Janssen et al
2002, 2004) that showed that cells situated in the neighbourhood of a blood vessel under well
oxygenated conditions exist in both hypoxic and non-hypoxic tumours.

However, these investigations also show badly perfused vessels. Also, temporary stasis
has been described in tumours (Denekamp and Daşu 1999). This means, that the well
perfused vasculature which becomes visible in the first minutes after injection may not
be the entire vasculature available for tracer transport by flow during the course of the
investigation. Frequently, the distinction between chronic and acute hypoxia is made. The
effect of fluctuations in the perfusion of a voxel on the TAC depends on the time scale of these
fluctuations relative to the diffusion time scale, and the partial volume of the voxel affected by
them. In our model, this is approximately taken into account by a spatially dependent input
function as follows.

We assume, that the input function to the tumour kinetic model CIn(t) can be derived
from the signal of a reference tissue SNT(t) = ACIn(t) + BCNT(t). We assume further that the
blood concentration after a certain time after injection is a sum of two exponentials:

CIn = e−k0t + r e−kK t . (8)

The first term e−k0t describes the dispersion of the tracer in the whole body blood volume,
whereas the second exponential represents the kidney clearance of the tracer. The rapid rise
of tracer concentration in the blood pool observed in the very early frames is not taken into
account by this input function. Therefore, the first frames (typically 4-5) have to be ignored
for data analysis.
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The concentration in the extravascular normal tissue space obtains from a convolution

CNT(t) = CIn(t) ⊗ e−k0t . (9)

Here, we assume that the diffusion rate constant k0 equals the mean rate of tracer flux into the
extravascular volume, averaged over the whole body.

The signal measured in a reference tissue voxel SNT(t) will be of the form

SNT(t) = A(e−k0t + r e−kK t ) + BCNT(t). (10)

The parameters k0 and kK are determined by fitting this expression (equation (10)) to a set
of TACs from a reference tissue in close proximity of the tumour. For the input function
of a tumour voxel, these parameters are kept constant while r remains floating. This allows
us to adapt the ratio between the fast and the slow component of the input function to the
local properties of the tumour vasculature and perfusion, and to some extent to their temporal
variability. The number of parameters in the fit of the voxel-by-voxel TACs to the compartment
model (equation (7)) thereby increases to five.

2.4. Data evaluation

In order to evaluate the time-activity data with the presented kinetic model, a least-squares
fit was performed to adjust the analytical function S(t) (6) to the patient TACs. For this, a
Levenberg–Marquardt algorithm was used (Press et al 1992).

The data points were included into the proximity function with errors corresponding to
Poissonian noise. In analogy to Casciari et al (1995), standard deviations σi were calculated
as scaled Poissonian noise, depending on local count rate Yi(t) and acquisition time Ti for the
respective frame.

Additional uncertainties may occur due to image coregistration errors. As only the late
data sets (2–4 h p.i.) undergo a matching procedure, additional errors have only to be taken
into account for the late data points. The magnitude of the individual error associated with
each image voxel depends strongly on the image gradient in the considered region. Hence,
the error due to an eventual mismatch �YMM can be estimated by

�YMM = �x

(
n∑

i=1

(Y − Yi)
2

nxi

)1/2

, (11)

where Yi are the count rates of the n neighbour voxels, xi is the distance to the respective
neighbour voxel and �x represents the average coregistration error, which is assumed to be
approximately 2 mm in our case. The total error associated with data points 2, 3 and 4 h p.i.
is determined by �Y tot

i = σiYi + �YMM .
The variability of the model parameters due to the estimated data errors is then determined

by the covariance matrix associated with the least-squares fit (Press et al 1992). The diagonal
matrix elements represent estimates of the respective parameter variances.

In addition, the continuous automatic tracer injection during the first 10 s after the start of
the acquisition is not taken into account by the model. To avoid problems, the very steep and
slightly oscillating component dominating all data curves during the first 60 s was omitted.

In order to visualize the voxel-by-voxel results of the compartmental data analysis, hypoxia
maps were generated by colouring each voxel of the tumour volume according to the tracer
uptake at infinite times S∞:

S∞ = lim
t→∞ S(t) = αw̃A, (12)

where α = Ak1(1/k0 + r/kK). The parameter plots show areas presenting high levels of tracer
uptake which correlates to the mean density of viable hypoxic cells in the respective voxel.
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Prompted by the immunohistochemical experiments which imply that vascular density
and hypoxia are independent parameters and which report a great variability of vascular
geometries, a second visualization tool was devised. A scatter plot is generated by plotting the
value of wAk3, describing the concentration of hypoxic cells weighted with the mean degree
of hypoxia for each voxel on the abscissa against w0 (the grade of perfusion) on the ordinate.
Characteristic patterns in the scatter plots will allow us to distinguish between tumour areas
according to vascular density and concentration of hypoxia.

3. Results

The TACs observed in a group of 16 examined patients showed great variability. In figure 3,
four examples of characteristic shapes of the acquired time-activity data are displayed.

In well perfused regions5, the shapes of the curves have a very pronounced tracer influx
and distribution during the first few minutes after tracer injection followed by an exponential
washout (see figure 3(a)). These tumour areas are characterized by a high density of vessels
and a good blood supply. The majority of cells should be well oxygenated because no tracer
retention can be seen.

In figure 3(b), a very similar behaviour can be observed during the first 30 min, followed
by a clear retention. This shows that a large number of viable hypoxic cells are present, which
co-exist with a very well perfused cell population. This is the classical picture of diffusion
limited hypoxia, where oxygen consumption outweighs supply.

More serious forms of hypoxia result from a deficient vasculature and chaotic blood flow.
However, this may also result in a decrease of viable hypoxic cells as necrotic cores may
form in which no tracer retention occurs. In terms of the TAC, the perfusion peak should
become smaller, and retention less pronounced until finally a horizontal curve type results, see
figures 3(c) and (d). In voxels with a significant concentration of necrosis, the purely diffusive
contribution to the signal as represented by wD and r should go up. The tracer enters these
tissue regions very slowly due to the low density of blood vessels. Accumulation of tracer
can be observed in the order of several hours after injection (see figure 3(d)). Because of the
small fraction of viable hypoxic cells, the total uptake is low.

Figure 4 shows the analytical curves S(t) determined by the kinetic analysis for the data
TACs presented in figure 3. The corresponding parameter values are summarized in table 2,
whereas table 3 shows the corresponding parameter value uncertainties.

In summary, figures 3 (a)–(d) represent the TACs in tumour regions with increasingly
deficient vasculature. The tracer influx peak at short timepoints after injection decreases as
the blood supply gets worse due to the more and more chaotic vasculature. At the same time,
while the number of viable hypoxic cells decreases (wA), the degree of hypoxia increases
(k3). The kinetic analysis showed that the resulting parameter values might reveal information
about the structural architecture of the tissue sample. Curve types representing putatively well
perfused and only slightly hypoxic tumours (such as figure 4(a)) are described by a relatively
high weight parameter w0 in addition to a small value for the product w̃Ak̃3 for the hypoxic
compartment. Also for the diffusion limited hypoxia type (figure 4(b)) a large w0 is found,
but in this case the value of w̃A and thus S∞ is also high.

In contrast, there exist tumour areas where very small parameters w0 are necessary to
describe the time-activity course of the data adequately. This behaviour is mainly observed

5 Good perfusion/high vascular density is supposed in regions where the dynamic TAC presents a fast tracer influx
after injection (≈ 30–40 s).
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Figure 3. Different characteristic time-activity data curves corresponding to tumour areas with
increasingly deficient vasculature. (a) Well perfused tumor area. (b) Tissue area with diffusion
limited hypoxia. (c) Diffusion limited and structural hypoxia. (d) Hypoxic/necrotic area.

for curves that putatively represent severely hypoxic or necrotic tissues (such as figures 4(c)
and (d)). Hence, w̃Ak̃3 turns out to take relatively high values.
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Figure 4. Resulting analytical time-activity curves corresponding to data curves (a)–(d) of
figure 3.

In the following, the kinetic data analysis will be shown in more detail exemplarily for
two of the 16 examined patients. Nevertheless, a kinetic analysis was performed for each data
set, but they cannot all be shown in the context of this paper.
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(a) (b)

Figure 5. Tumour region of a head-and-neck patient: (a) SUV distribution 2 h p.i. for a whole
PET slice, (b) parametric plot: S∞ for each voxel.

Table 2. Resulting parameter values for curves (a)–(d), figure 4.

Putative
structure types w0 r w̃D (min−1) w̃A (min−1) k̃3 (min−1)

(a) Low hypoxia/ 1.06 0.29 0.09 0.00 –
well perfused

(b) Diffusion limited 1.50 0.10 0.13 0.31 0.03
hypoxia

(c) Diffusion limited and 0.32 0.45 0.28 0.08 0.21
structural hypoxia

(d) Strongly hypoxic/ 0.16 1.67 0.14 0.01 0.36
necrotic

Table 3. Errors of model parameters due to image noise and coregistration uncertainties associated
with curves (a)–(d), figure 4.

�w0 �r �w̃D (min−1) �w̃A (min−1) �k̃3 (min−1)

(a) 0.17 0.17 0.02 0.00 –
(b) 0.18 0.11 0.02 0.11 0.02
(c) 0.16 0.39 0.06 0.08 0.11
(d) 0.18 1.86 0.07 0.01 0.25

Figures 5(b) and 7(b) show S∞ parameter plots of two different patients. Both hypoxia
maps are displayed in comparison to the corresponding SUV distributions at 2 h p.i.
(figures 5(a) and 7(a)).

Figure 5(b) represents a first example of a parametric plot for a head-and-neck patient.
The region characterized by an increased SUV 2 h p.i. is also highlighted in the parametric
plot. A typical TAC of this region is plotted in figure 6. The curve shows a relatively high
influx peak as well as a positive slope for long times after injection.

In the second case, displayed in figure 7, the SUV image 2 h after injection indicates two
distinct areas where the tracer seems to be accumulated (figure 7(a)). However, the parametric
plot for the indicated region of interest only highlights one of these two regions (figure 7(b)).
This phenomenon is due to a different overall shape of the curves in the respective tumour
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Figure 6. Typical TAC of the tracer accumulating region in figure 5.

(a) (b)

Figure 7. (a) SUV distribution 2 h p.i., (b) parametric plot for the marked tumour region: S∞ for
each voxel.

voxels and may be caused by different architectures of the tumour vascularization leading to
different diffusion times for the tracer.

Voxels A and B were chosen as representatives for these two areas. The analytical curves
S(t) as well as the corresponding measured data points are displayed in figure 8. The plotted
TACs present an interesting behaviour: even though the two curves have nearly the same
activity level 120 min after tracer injection, the shape of the curves is completely different.
While the TAC for voxel A shows a very high tracer influx peak followed by a continuous
washout, voxel B is characterized by a steady accumulation of tracer 30 to 240 min p.i. in
addition to a much lower influx peak at the beginning. Hence, the impression that the static
image 2 h after injection presented the same level of tracer accumulation was due to the fact
that the intercept point of two absolutely different curves was situated coincidentally at the
time of image acquisition. Therefore, it does not seem reliable to identify hypoxia only on the
basis of a static image 2 h p.i. which obviously bears high risks of incorrect interpretation.

An additional tool to analyse hypoxia and perfusion characteristics of a tumour is provided
by the (w0, wAk3) scatter plot. It allows us to determine the dominating type of structural
architecture in the tumour volume. Patients displaying large values for w0 for most of the
voxels have putatively well perfused tumours. Whereas, if the tumour contains hypoxic cores,
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Figure 8. Comparison of the overall curve shapes of voxels A and B, figure 7.

the corresponding wAk3-parameters will have high values and will therefore be situated in the
lower right area of the scatter plot. Hence, the presented scatter plot provides a medium to
classify tumours according to different characteristic structure types.

For the two patients exemplarily shown above (figures 3 and 5), scatter plots have been
generated. The analysis of the scatter plot for patient 1 (figure 9(a)) reveals that a large
fraction of the tumour volume has relatively high levels of perfusion together with rather small
concentrations of hypoxia. In contrast, patient 2 (figure 9(b)) shows for the whole tumour very
low perfusion values, and at the same time high concentrations of hypoxia are observed.

4. Discussion

The presented investigation showed that the overall shapes of the TACs contain essential
information about hypoxic tumour areas. Particularly the behaviour of the curves at long time
scales is important. Hence, a criterion based on a single time point threshold is not sufficient
to perform a reliable hypoxia analysis. The use of a static criterion to identify hypoxia in
Fmiso PET scans might have been a reason why Bentzen et al (2003) could not find a clear
correlation between PET and Eppendorf electrode measurements.

Curve features such as the position of the minimum in the TACs between 20 and 60 min
hint at the characteristics of the underlying processes which occur on corresponding time
scales. This property is understandable by the immunohistochemical investigations with
pimonidazole (Ljungkvist et al 2002, Janssen et al 2002, 2004) that found that long diffusion
distances had to be travelled by the tracer before reaching hypoxic cells. The signature of the
characteristic diffusion times in the tumour tissue is the position of the minimum in the curves.

Different tumour structure types may be associated with different characteristic shapes of
the TACs. Putatively well perfused and regularly vascularized tumours show curves with a
high influx peak and exponential washout, whereas a good perfusion together with diffusion
limited hypoxia should result in a positive slope at long time scales, leading to high tracer
uptake values S∞. The curves probably corresponding to severely hypoxic or necrotic tissues
present no influx peak and a horizontal time trend remaining at relatively low SUV levels.
These results can be understood by comparison with the microscopic tissue sections presented
by other investigators (Ljungkvist et al 2002), where different characteristic hypoxia patterns
(‘patchy’ and ‘ribbon-like’) were found.
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(a)

(b)

Figure 9. Scatter plots for two patients. (a) Patient 1 (cf figure 3) shows a quite well perfused and
only moderately hypoxic tumour. (b) Patient 2 (cf figure 5) in contrast has a badly perfused and
severely hypoxic tumour.

A particular problem with severely hypoxic areas is the presence of necrosis. Since Fmiso
uptake occurs only in viable hypoxic cells, a low uptake may be caused by a small fraction of
surviving cells. This is compounded by the finding that the binding rate constant is similar to
the rate of renal clearance, so that the net effect can be a constant signal. In contrast, tumour
areas that present very high levels of tracer uptake consist of many viable, hypoxic cells by
necessity. These may not be the most resistant tumours and they might constitute a group that
highly benefits from individually adapted therapies. A classification of the patients according
to these criteria can be performed on the basis of the introduced perfusion-hypoxia scatter
plots.

The presented model involves slow diffusion rates of the tracer in the interstitium, caused
by long diffusion distances in the tumour tissue. It also respects the inherent heterogeneity
of tumour tissues, where well perfused and hypoxic sub-volumes may coexist in the same
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PET voxel. These facts were not considered by previous models (Casciari et al 1995), which
explicitly treated homogeneous tumour tissues and were more appropriate to normal tissues
made hypoxic under experimental conditions.

The heterogeneity of the tumour structure requires that all compartment weights remain
floating in the fits to accommodate partial volume effects by virtue of the linearity of the
differential equation and the input function becomes spatially variable. Due to the particular
choice of the input function and the assumption of physical transport into the diffusive
compartment which ensures k1,in = k1,out, the total number of fit parameters is five. This
reduces the variability and co-variance of the fits. The experimentally established need for a
spatially variable input function poses an obstacle to the use of graphical TAC analysis.

5. Conclusion

The investigated method allows us to identify and quantify hypoxia in human head-and-neck
tumours based on dynamic Fmiso PET scans better than SUV alone. Hypoxia is essentially a
consequence of irregular vascularization, and this needs to be taken into account when time-
activity curves of hypoxia PET tracers are interpreted. Perfusion and the degree of hypoxia
seem to be independent properties of a tumour.
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