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Geometric Distortion in Structural Magnetic Resonance Imaging

Deming Wang* and David M. Doddrell

Centre for Magnetic Resonance, The University of Queensland, St. Lucia, QLD 4072, Australia

Abstract: Geometric distortion, an undesirable image artifact, is an inferior aspect associated with magnetic resonance
imaging (MRI). Although slight distortions in MR images often have no consequences in reaching clinical conclusions,
geometric distortions can make significant differences in certain MR applications such as, for example, stereotactic
localization in radio-surgery and MR image-guided biopsy. In this article, geometric distortion in structural MRI is
reviewed. It begins with a brief discussion of various sources that can cause geometric distortion in structural MRI,
followed by a review of the apparatus and methods that have been developed for the measurement and characterization of
the geometric distortion in MRI. The paper will then focus on a novel phantom-based technique that has been developed
recently by the authors. This technique can provide a comprehensive and complete measurement of the geometric
distortion in 3-dimensions with unprecedented details and accuracy. The major outcomes of a comprehensive study on the
geometric distortion in representative clinical MR scanners, carried out recently using this technique, will be discussed.
The article will also include a discussion of various correction methods that have been developed for correcting geometric

distortion in MRI.
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correction.

1. INTRODUCTION

Geometric distortion has long been regarded as an
inferior aspect of magnetic resonance imaging (MRI), an
imaging modality that has revolutionized medical imaging in
the past two decades. Although MRI has now become the
preferred choice in many clinical examinations due to its
superior capability to differentiate diseased tissues from
healthy tissues and one tissue type from another, the
possibility of geometric distortion being present in MR
images still limits its full potential for use in some
applications. One such application is image-guided
radiosurgery [1-10]. In current practice, both MR and
computerized tomography (CT) images are used in this
technique. MRI is employed to provide better definition of a
tumor, while CT is used for spatial localization in the
treatment because of the possibility of the presence of
geometric distortion in the MR images. This practice is not
ideal as it is time consuming. Additionally, the co-
registration procedure of aligning MR and CT images (often
referred to as image fusion) can cause errors in spatial
localization particularly if MR images contain significant
geometric distortion. Another area of major concern related
to geometric distortion is the MR image-based quantificat-
ion. Obviously, any geometric distortion will ultimately lead
to errors in the extracted volumes based on MR images.

Geometric distortion in MRI is a complex issue. Firstly,
MRI is intrinsically a 3-dimensional (3D) volumetric
imaging technique, therefore, geometric distortion in MRI
needs to be understood in 3-dimensions. This is equally true
in MR images acquired using the 2-dimensional (2D)
imaging techniques. This point seems to have been

*Address correspondence to this author at the Centre for Magnetic
Resonance, The University of Queensland, St. Lucia, QLD 4072,
Australia; Tel: +61-7-33654100; Fax: +61-7-33653833; E-mail:
deming@cmr.ug.edu.au

1573-4056/05 $50.00+.00

overlooked in the past. Secondly, geometric distortion in
MRI can arise from a variety of sources. Generally speaking,
these sources can be classified as hardware-related and
tissue-related. The main sources contributing to geometric
distortion from MRI hardware are the inhomogeneity in the
main magnet, the nonlinearity in the gradient fields and the
eddy currents associated with the switching of the gradient
coils. The tissue-related sources mainly include susceptibil-
ity difference and chemical shift. While the hardware-related
sources can be measured and characterized for individual
systems, tissue-related distortion is imaging object-
dependent and its assessment normally requires special
modeling. Thirdly, one of the unique features of MRI is its
diversity. MRI is in fact a collection of many sequences (or
techniques) that explore and manipulate a wide range of spin
physical properties. As a result, the geometric distortion can
be manifested quite differently in different sequences. For
example, the geometric distortion due to the inhomogeneity
in the main magnet and the susceptibility difference is very
different in MR images acquired using a simple spin echo
sequence from that obtained, for example, using echo planar
imaging (EPI).

Due to the complexity of the issue, it is not our intention
to attempt to cover all aspects of geometric distortion in MRI
in this mini-review. It is, however, a fact that geometric
distortion has been one of the intensively researched topics
in MRI over the past two decades. Currently, there is
extensive literature to be found on various aspects of
geometric distortion in MRI. For example, the field
inhomogeneity-related geometric distortion in MR images
using fast imaging sequences such as EPI has received a
great deal of interest [11-14]. The tissue susceptibility
difference-related geometric distortion has also been studied
widely [15-20]. This mini-review is mainly devoted to the
geometric distortion in structural MRI principally caused by
the inhomogeneity of the static field and the nonlinearity of
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the gradient fields. Geometric distortion in structural MRI is
an important issue, especially in neuroimaging. This review
was written with a particular focus on two important
application areas: MR image-based volumetric measurement
and MR-image-based spatial localization.

Over the past decade, we have witnessed an explosion of
publications on the use of structural MRI in the study of a
wide range of brain diseases. Numerous publications have
now appeared in the literature reporting the cross-sectional
as well as longitudinal MRI studies on Alzheimer’s disease,
multiple sclerosis, epilepsy, and a range of other brain
diseases. The primary information sought from the MR
images in these studies is the structural information, mainly
volumes and shapes. While findings from different groups
seem to agree generally, discrepancies do exist. Some of
these discrepancies were thought to be due to the heterogen-
eous nature of the disease or the errors (both subjective and
objective in nature) associated with the derivation of the
volumes from structural MRI. However, a potential source of
errors that has been rarely investigated is the geometric
distortion. The reason for this is probably due to the lack of
an effective technique that can provide a convenient and
accurate measurement of the geometric distortion in
structural MRI, rather than ignorance. The lack of
investigation on possible errors due to geometric distortion is
particularly disturbing for longitudinal studies, as some of
these studies have lasted for many years. The instability and
possible upgrades of a scanner occurring during the study
interval cannot guarantee the same performance in a given
MR system for the entire study period.

As stated earlier, the possibility of geometric distortions
in MRI limits its full potential in the application of image-
guided radiation treatment. This is particularly the case in
radiosurgery in which spatial localization of tumors in the
brain is generally required within an accuracy of better than
1 mm. Although MRI scanners have been designed to have
the most homogeneous static field and the linearity of the
gradient fields around the isocentre, geometric distortion that
falls within 1 mm inside a volume of the size of the human
head (~180 mm in diameter) is still beyond the reach of most
clinical MR scanners. Therefore, there has been a great deal
of interest in the study of geometric distortions in MRI
scanners [21-45], with a particular focus on the potential use
for spatial localization in the treatment of brain tumors.
However, most of these studies were carried out in 2D. In
other words, geometric distortion was only investigated
within the imaging plane and the distortion along the normal
of the imaging plane was usually ignored. These incomplete
measurements can be detrimental if the results are not
cautiously used for treatment planning. MRI-guided
treatment is also being considered in treating tumors in
peripherial areas. Geometric distortion in MR systems can be
significantly larger in areas further away from the isocentre.

This mini-review is organized as follows. In section 2, a
brief description of the geometric distortion due to the
inhomogeneity of the static field and the nonlinearity of the
gradient fields is given. This is followed by a review of the
methods that have been developed and used for the
measurement and characterization of the geometric distortion
in MRI (section 3). Hardware-related geometric distortion in
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MRI scanners currently in clinical service is reviewed in
section 4. These include the systems with superconducting,
resistive or permanent magnets. Methods developed for
correcting geometric distortion in MRI are reviewed in
section 5 and the final section (section 6) is devoted to some
discussion.

2. MR HARDWARE-RELATED
DISTORTION

Magnetic resonance Fourier imaging works on the simple
principle of the conventional Fourier transform that relates
the spatially encoded time-domain data to the frequency-
domain data, namely the MR image. The underlying
requirement is the use of spatially varying linear gradients
that are used for the encoding of spatial information. Thus,
any deviations from the linear behavior in the gradient
systems (often referred to as gradient field nonlinearity) will
cause geometric distortions in the resulting MR images. Of
course, in this linear relationship, the main magnet that is
used for polarizing the spins (the source of the MR signal)
also needs to be uniform within the imaging volume. Any
inhomogeneity in the main magnet (the static field) will
cause geometric distortion in the presence of a gradient field.

GEOMETRIC

The inhomogeneity in the static field is usually measured
by the maximum deviation from a designed field strength
(By) within a defined volume of interest.

maX(BZ(X!yvz)) - BO
BO

The inhomogeneity is usually measured in units of ppm for a
spherical volume. For superconducting magnets equipped
with advanced shimming technologies, a uniformity of 1
ppm can be easily achieved. At 1.5 T, this translates to a
maximum field deviation of 1.5 mlI' (micro Tesla). The
corresponding geometric distortion in the presence of the
gradients normally used in contemporary MRI systems (~2
mT/m or 2mI/mm) would be less than 1 mm. In low field
systems with permanent or resistive magnets, the uniformity
of the static field can be worse and it can lead to larger
geometric distortions. Clearly, the magnitude of the
geometric distortion due to the static field inhomogeneity is
dependent on the gradient strength used. For example, at 1.5
T with a gradient of 1.5 mT/m, each part per million of
inhomogeneity would result in a distortion of 1 mm. This
distortion is halved if a gradient of 3 mT/m is used. In additio
n, th e static field inhomogeneity mainly causes geometric
distortion along the readout (frequency-encoding) direction
and slice selection direction (in 2D techniques) but not along
the phase encoding direction as phase encoding is insensitive
to field inhomogeneity [44].

The spatial characteristics of the gradient fields generated
by a MR gradient sub-system can be compactly described by
the so-called gradient coil tensor, L(r) [46]. This tensor is
defined as

G () Lo Ly Le( Gx
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where G (i = x, y and z) are the components of the actual
gradient generated by the gradient coils (X, Y and Z) and Gy,
Gy and G, are the designed nominal gradient strengths. If the
gradients are perfectly linear, the gradient coil tensor is
reduced to the 3x3 identity matrix, I. Thus, the gradient coil
tensor L(r) can be decomposed into a linear part (1) and a
nonlinear part denoted as L(r)

L(r) =1 + L(r)

where
1 0 O
1=10 1 0
0o 0 1
and
_ Lyx (1) -1 Lyy (n Ly, (r)
L(r) = Lyx (r) Ly (-1 Ly, ()
Lax (V) Ly (1) L, (-1

clearly, L (r) provides a complete description of the gradient
field non-linearity. It is this nonlinear part that can cause a
range of undesirable effects including geometric distortion in
MR images. In MRI systems with superconducting magnets,
it is the gradient field nonlinearity that contributes most to
the observed geometric distortion (more in section 4). This is
particularly the case in the new generation of MR systems in
which shorter gradient coils are used for producing fast-
switching gradients.

The geometric distortion in MRI due to the static field
inhomogeneity and the nonlinearity of the gradient fields is
3D in nature. This is true, both in the use of 2D (slice
selection), and 3D (volumetric) imaging techniques. The 3D
nature of the geometric distortion in MRI appears to have
been overlooked in the past as most studies carried out on
geometric distortion in MRI were in 2D. Let’s use a simple
example to illustrate the 3D nature of the geometric
distortion in MRI. In Fig. 1, the geometric distortion studied
using a grid phantom is shown. Here, the geometric
distortion is only measured in the slice plane (the imaging
plane). The distortion along the normal of the plane in this
2D method is not measured. In fact, an assumed “flat” slice
plane in 2D methods (schematically shown in Fig. 2a) may
look more like the one shown in Fig. 2b, a curved surface,
due to the distortion along the normal of the slice plane.
Therefore, with any 2D methods, this information is
unobtainable and the measurement is incomplete. A
complete measurement of the geometric distortion in MRI
clearly requires a 3D approach. This is schematically shown
in Fig. 3 using a cube. Here, the known positions of the
points on the surfaces of the cube in the undistorted space
(represented as grid points in Fig. 3a) are completely tracked
down in 3D in the distorted image space (Fig. 3b).

3. MEASUREMENT AND CHARACTERIZATION OF
GEOMETRIC DISTORTION IN MRI

Geometric distortion in MRI has usually been measured
and studied by specially designed geometric phantoms.
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Fig. (1). A MR image from a 2D grid phantom showing the
geometric distortion in the imaging plane.

There are a large number of geometric phantoms that have
been specifically designed for the measurement of geometric
distortion in  MRI by various research groups
[24,26,27,29,30,34,35,40,41,45]. In addition, MR vendors
provide their customers with a set of phantoms which
usually include one for geometric distortion for calibration
and quality checks. Relevant professional societies have also
developed special phantoms for their own acceptance tests
and for regular monitoring of the performance of MRI
systems in clinical service [47-51].

The basic idea used in the design of geometric phantoms
for geometric distortion measurement in MRI is very simple.
Geometric phantoms usually contain a set of reference
points, or features that can be easily identified in MR
images. For easy reference, these reference points or features
will be called “control points” hereafter. By establishing the
correspondence between the locations of the control points in
the distorted MR image and their known positions defined
by the geometry of the phantom, geometric distortion is then
measured. Among some of the developed phantoms, the
control points are only defined in 2-dimensions. These
phantoms are thus referred to as 2D phantoms in order to
distinguish them from those with the control points defined
fully in 3D (therefore, referred to as 3D phantoms). In the
following, a brief discussion is given on some of the 2D and
3D phantoms developed for geometric distortion
measurement in MRI including, a 3D phantom recently
developed by us.

3.1 2D Phantoms

Among the phantoms developed in 2D, the grid phantom
is probably the most popular one. A typical MR image of
this phantom is shown in Fig. 1. This phantom is a two
dimensional array of orthogonally interlocking plastic strips
immersed in a water solution. It provides a convenient model
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(2a)

(2b)

Fig. (2) .An assumed “flat” slice schematically shown in (a) is actually distorted and may look like the one shown in (b) due to the geometric

distortion along the normal of the slice.
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Fig. (3) A complete measurement of geometric distortion in MRI is demonstrated by using grid points on the surfaces of a cube: their known
positions in (a) and their positions in the distorted image space which can be fully “tracked” down in 3D (b).

for displaying geometric distortions in the imaging plane.
The other popularly used 2D phantoms employed parallel
rods [24, 26], or cylindrical holes filled with water. In a
special phantom designed for studying geometric accuracy in
spatial localization using a Leksell stereotactic frame, three
sets of parallel rods, each aligned along one of the three
orthogonal axes, were used [26]. In this way, the geometric
distortion can be measured in the three principal planes
(coronal, sagittal and axial) in a single set of 3D phantom
image.

Although 2D phantoms have the advantage of being easy
to use and the geometric distortion in the imaging plane is
easily perceptible, they only provide an approximate
measurement as noted earlier. If unprimed coordinates (x, v,
z) are used to denote the positions of the control points
defined by the geometry of the phantom and primed
coordinates (x', y', z") for their positions in the distorted

image space, the correspondence in a 2D phantom with the
control points defined in the xy plane can be described as

X X

Yoy
unknown « Z

Because the coordinate of the control points along the
normal of the imaging plane (z) is undefined in 2D
phantoms, it is unmeasurable (unknown).

3.2 3D phantoms

As previously stated, the geometric distortion in MRI is
3D in nature, therefore, its description and measurement
needs to be carried out in 3D. In 3D phantoms, the position
of the control points is defined along all three orthogonal
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directions. The geometric distortion is then completely
described by the following correspondence

Xes X

Yo ¥
2« Z

A number of different designs for introducing control points
in 3D into a geometric phantom have been attempted. In one
design, spheres of a certain size arranged in three dimensions
with the centre of gravity of the spheres defined as the
control points have been used [41]. To ensure the accuracy,
spheres with a sufficient size were required. This design
approach can place a constraint on the number of spheres
that can be arranged in a phantom. In another design, parallel
rods, very much like those used in the 2D phantoms, were
employed, but the rods are tapered [45]. In this way, the
linearly varying cross section of the rods along the third
direction (the z axis) can be used to extract the geometric
distortion along the z axis through measuring the spot size of
the cross section of the rods in the imaging plane. This
approach, however, has a weak point. Because the geometric
distortion in the imaging plane can significantly alter the
spot size of the cross section, the measurement of z locations
in this way could potentially contain large errors. Very
recently, there was another phantom reported in the literature
that is principally a 3D design, though the phantom was only
demonstrated in 2D [40]. How this phantom can be used in
3D and the accuracy that can be achieved with it still remains
to be investigated.

3.3 A New Effective 3D Phantom

Motivated by the lack of an effective phantom that can be
conveniently used to provide a comprehensive and complete
measurement of the geometric distortion in MRI, a novel 3D
phantom has recently been developed [52]. The design of
this 3D phantom uses a simple concept that a point in 3D
space can be uniquely defined by three orthogonal planes. A
photograph of a 3D phantom that was constructed to fit into
a body coil based on this design is shown in (Fig. 4). It has a
very simple structure. It consists simply of layers of grid
sheets aligned in parallel with equal spacing along the third
dimension (the z axis) to create a 3D array of points. In this
particular phantom, the array contained a total of 10,830
(19x19x30) control points spanning an effective volume of
257.04x259.02x261.0 mm® (with intervals of 14.28 mm,
14.39 mm, and 9.00 mm, along the respective X, y and z
axes). For more details of this phantom, see Ref. [52].

One of the attractive features in this design approach is
that it can easily “incorporate” as many control points as
desired in a phantom simply by varying the dimensions of
the grid and the width of the grid sheet. Thus, the spatial
variation of the geometric distortion can be easily measured
with desirable details using a phantom based on this design.
The effectiveness of this approach will be demonstrated in
the next section where a summary on an extensive study of
the geometric distortion in clinical MR systems, carried out
recently using this 3D phantom, is presented. Another
attractive feature associated with this phantom is accuracy.
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Fig. (4). A photograph of a 3D phantom based on a new design
approach using a concept that a point in 3D can be defined by the
intercepting point of the three orthogonal planes.

The accuracy in a phantom-based technique is largely
determined by the accuracy with which the positions of the
control points, namely the coordinates x', y' and, z' in the
distorted image space are measured. In some of the previous
studies using geometric phantoms, the coordinates of the
control points were simply measured through a manual
method and in this way the obtainable accuracy is limited by
the voxel dimensions. There are a few studies that have
employed more sophisticated imaging processing techniques,
and the coordinates of the control points were measured with
much higher accuracy. Associated with the new 3D
phantom, an automated technique based on 3D image
processing has been developed [52]. It has been
demonstrated that this technique allows the coordinates of
the control points in MR phantom images to be extracted
with a sub-voxel accuracy. We have recently made further
improvements to the accuracy in the measurement of the
coordinates of the control points along the x and y axes.

3.4 Characterization of Geometric Distortion in MRI

There is no standard procedure that has been developed
for the characterization of the geometric distortion in MRI. A
commonly used method is to measure the distance between a
pair of control points selected in an imaging plane and to
calculate the deviations from the known distance. This
method has been widely used in practice and has also been
recommended by AAPM [47] and by the Institute of Physics
and Engineering in Medicine (United Kingdom [50]). It is
simple, but is basically a 2D method and as noted earlier it
can only provide a partial measurement of the geometric
distortion. In addition, there is no universally adopted
scheme on how the geometric distortion should be
characterized and represented. In some recommended
methods, geometric distortion is investigated only in the
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three imaging planes (coronal, sagittal and axial) which pass
through the system’s isocentre.

The measurement of the geometric distortion by the new
3D phantom is comprehensive [52]. The geometric distortion
within the effective volume of the phantom is fully described
by positional deviations along the three orthogonal axes

dx(r) =x"(r) —x
dy (r)=y'(r-y
dz(n=z'(r)-z
or
dr(r)=r(r)-r

These positional deviations can be obtained, for example,
using an interpolation method from the measured positional
deviations at the control points

dXijk = Xijk = Xijk

dYijk = Yijk = Yijk

AzZijk = Zijk — Zijk

or

drijx = Fijk— Mijk
In this way, a comprehensive characterization scheme can be
developed and such a scheme has been proposed in Ref.
[53]. There are a number of attractive features in this new
scheme. Firstly, the use of the positional deviations allows a
unique definition of the distortion by comparing a point’s
true position with its displaced position measured in the
distorted image space. This measure of geometric distortion
is particularly useful for MR image-based spatial
localization. Secondly, the parameterized data in the scheme
are always given with respect to a well-defined volume of
interest. In the scheme discussed in [53], there are two types
of volume of interest: a rectangular parallelepiped (including
cube), and a sphere, which have been considered. Clearly,
these two volumes of interest are relevant to body and neuro
imaging applications. The rectangular parallelepiped has its
surfaces parallel to the standard imaging planes. Both VOIs
have their centre chosen at the isocentre. The key parameters
used in this scheme include the maximum absolute positional
deviations along the x, y and z axes (|dX|max,|dY|max and |dz|max)
and the maximum absolute deviation in positional vector
(drmax © || dr ||max ) Within a given volume of interest. These
maximum positional deviations are determined through a re-
sampling process. By using a re-sampling process, the
surfaces of VOI are well represented, allowing the true
maxima to be found within a given volume of interest.

4. GEOMETRIC DISTORTION IN REPRESENTA-
TIVE MRI SYSTEMS

In this section, the geometric distortion due to the
inhomogeneity of the static field and the nonlinearity of the
gradient fields in some representative MRI systems is
reviewed.

4.1 MR Systems with Superconducting Magnets

In clinical MRI systems equipped with superconducting
magnets, geometric distortion due to the gradient field
nonlinearity is usually much larger than that arising from the
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static field inhomogeneity. This is especially the case in the
new generation of MRI systems in which shorter gradient
coils are used for achieving stronger gradient performance.
For example, in a Siemens Sonata 1.5 T system, the
geometric distortion arising from the static field inhomogen-
eity can be reduced within a fraction of one millimeter usin%
advanced shimming technologies within a volume of 240
mm?®. In comparison, the geometric distortion caused by the
gradient field nonlinearity can be as large as 10 mm. As a
result, correction for geometric distortion due to the gradient
field nonlinearity has become necessary. In order to
minimize the geometric distortion from gradient field
nonlinearity in MR images, major MRI vendors such as GE
and Siemens have now implemented a correction procedure
before the frequency domain data (the MR image) are finally
generated.

Geometric distortion has been reported on a large number
of MRI superconducting systems [21-36, 42]. However,
most of these studies were made using 2D phantoms
providing only a partial measurement of the geometric
distortion. In addition, different studies used slightly
different methods for assessing the geometric distortion. The
volume of interest or region of interest (if in 2D) used in
these studies also varied. Besides, the systems investigated in
some earlier studies might have had significant upgrading to
the system and the measured data may have now become
irrelevant. Therefore, no attempt was made to recollect all
these data in this mini-review. Instead, the geometric
distortion data presented below were largely drawn from a
recent study on four clinical MR systems (two from GE and
two from Siemens) using our 3D phantom [54]. This study is
probably the most comprehensive study ever carried out on
hardware-related geometric distortion in MRI to date.

The geometric distortion in a GE TwinSpeed 1.5 T
system may be a good representation of the geometric
distortion in  contemporary MRI  systems  with
superconducting magnets. In this system, as the name
suggests, there are two sets of gradient coils. The gradient set
named Zoom mode is a representative set of faster and
stronger gradients which normally have greater nonlinearity
problems. The geometric distortion in the Zoom mode
measured as the maximum absolute positional deviations in
the axial planes at various z positions is presented in Fig. 5.
As shown, the maximum absolute positional deviations in
the central slices (|z| < 75 mm) are relatively small (< 3 mm)
but they increase rapidly as they move away from the central
region (Jz| > ~75 mm). It should be pointed out that the
geometric distortion (except along the z axis) presented here
does not represent the full effect of the gradient field
nonlinearity because the vendor’s correction (applied in the
Xy plane) was used in the acquisition of the phantom MR
images. The geometric distortions were much greater when
the full effect of the gradient field nonlinearity was
investigated [54]. The other gradient set denoted as Whole
mode in this system represents gradient coils with much
better linearity and slower slew rate. The mapped geometric
distortion for the Whole mode is summarized in Fig. 6. The
maximum positional deviations in this gradient set are
generally small between 1 and ~4 mm in the entire VOI
(240° mm®). Similar geometric distortion patterns have also
been observed for the two Siemens representative systems, a
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a GE TwinSpeed 1.5 T MRI system (Zoom mode) with vendor’s correction applied in the xy plane.
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Fig. (6). The maximum absolute positional deviations (® : | dX |max 0: | Y [maxe ¥: | 0Z |max N: drime) OF the geometric distortion measured in
a GE TwinSpeed 1.5 T MRI system (Whole mode) with vendor’s correction applied in the xy plane.

Sonata and a Quantum [54]. As expected, the geometric
distortion in the Sonata which had a fast-speed gradient set
was much larger than that in the Quantum which was
equipped with a gradient system of the previous generation.
For a complete description of the geometric distortions in
these systems, see Ref. [54].

For neuro-imaging applications, the geometric distortions
in these systems were also investigated within a spherical
VOI (r =95 mm). As expected, the geometric distortion was
much less in this spherical VOI. If measured by the
maximum absolute positional deviations, the maximum
geometric errors were in the range of 2.0 to 2.5 mm in all
these systems [54]. A typical result for the maximum
positional deviations measured on the surface of spheres
with different radii is shown in Fig. 7. In this particular
system, the maximum absolute positional deviations along

the y and z axes were 1.5 mm or less and that along the x axis
was about ~2.0 mm or less.

4.2 MR Systems with Resistive or Permanent Magnets

Low field MR systems currently employed in clinical
service mainly include those operating at ~0.2 T using a
permanent or resistive magnet. Below, the geometric
distortion in three representative low field systems, recently
reported in the literature, is summarized. These systems have
been reported in routine wuse for radiation therapy
simulations.

A geometric distortion study on a low field 0.2T MR
system (MRP 20 EX; Hitachi Med. Co. Tokyo) has been
carried out using a 2D grid phantom with an effective area of
240x240 mm? [38]. The authors reported that within 120 mm
of the image centre (the isocentre), the maximum positional
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Fig. (7). The maximum absolute positional deviations ( ® : | dX |max 0: | Y [max ¥: | 0Z |max N: drime) OF the geometric distortion measured in
a GE TwinSpeed 1.5 T MRI system (Zoom mode) with vendor’s correction applied in the xy plane on surface of spheres of different radii.

deviations were between 3.5 and 5.0 mm but in the majority
of the area, the positional deviations were less than 2 mm.
Larger geometric distortions were observed with the
maximum positional deviations of 12.6 mm to 15.0 mm in a
larger field of view. They also investigated the geometric
distortion by using different imaging sequences and
observed up to ~15% differences in the measured maximum
positional deviations. The geometric distortion in a 0.23T
open MRI system (Philips Medical Systems, Cleveland, OH
44143) has been comprehensively studied recently [39]. The
geometric distortion was investigated with and without
vendor’s correction using a 2D grid phantom. Without
correction, distortions exceeding 20 mm were observed at the
image periphery. The geometric distortion was significantly
reduced after vendor’s correction. Within the spherical VOI
of r = 100 mm, the positional deviations were reduced to
below 2 mm and were less than 5 mm within a larger
spherical VOI (r = 20 cm). In a more recent study ona 0.2 T
MRI system (Siemens Magnetom Open viva), maximum
positional deviations of 28.0 mm and 16.0 mm along the x
and y axes in the axial plane were reported [40]. These
authors also studied the effectiveness of two correction
methods, one provided by the vendor and one developed by
the authors. After using the wvendor’s correction, the
maximum positional deviations were reduced from 28.0 mm
and 16.0 mm to 20.9 mm and 11.1 mm, respectively. The in-
house correction method gave a better performance with the
maximum positional deviations reduced to 13.7 mm and 7.5
mm, respectively.

It should be pointed out that in all these studies, the
geometric distortions were measured using 2D phantoms. In
addition, there were few details given on how the positions
of the control points were measured. Presumably, they were
all measured manually. Thus, the accuracy in these
measurements is limited by the pixel’s dimensions. The
pixel’s dimensions in the imaging plane used in these studies
varied between 1.25 mm and 1.76 mm.

5. METHODS FOR CORRECTING GEOMETRIC
DISTORTION

Correction for geometric distortion in MR images is
often carried out as a post-processing step. Clearly, a full
correction needs to be carried out in 3D which obviously can
only apply to volumetric image data. For single slice or non-
contiguous slices (slices acquired with gaps in between), the
correction can only be done approximately within the slice
plane. The correction methods currently supplied by the
major MR vendors such as GE and Siemens work only in 2D
as mentioned in the previous section (the 3D versions of
these methods may become available soon).

For a full correction in 3D, the correction problem is to
find the functions that relate the coordinates in the distorted
image space (X', ¥', z') and in the undistorted physical space
x.y,2)

X' =1(x,y,2)
y' =fy(xy.2)
' =1,(x,y,2)

For easy reference fi(x,y,z), f,(x,y.z) and f,(x,y,z) are referred
to as mapping functions. When these mapping functions are
obtained, the correction simply involves a re-sampling of the
image volume. The re-sampling is usually done using an
interpolation method. There are a large number of
interpolation methods that can be used for re-sampling. The
ones that are most popularly used are the tri-linear
interpolation and sinc interpolation. The tri-linear interpola-
tion is extremely efficient while the sinc interpolation
usually offers better quality but at a considerably high
computational cost.

There have been a number of different correction
methods developed to obtain the mapping functions, f,(x,y,z),
fy(x,y.z) and f(x,y,z) for correcting geometric distortion
caused by MR hardware. For example, to correct geometric
distortions caused by the gradient field nonlinearity the use
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of spherical harmonics expansion for modeling the mapping
functions was proposed [55]. These functions can be
calculated from the known geometry of the gradient coils
[56, 57] or derived numerically through the mapped fields by
a magnetic field camera (MetroLab Instruments SA, Geneva,
Switzerland; http://www.metrolab.ch). In phantom-based
methods, the use of polynomials to model the mapping
functions seems to be a popular choice. Polynomials of
various orders have been used in modeling geometric
distortion in MRI [41,43,57].

Spherical harmonics functions or polynomial functions
are global functions and they are analytically compact and
contain only a small number of parameters. However, there
are some disadvantages associated with the use of global
functions for modeling geometric distortions in MRI. Firstly,
there is a problem with the optimal selection of the terms to
be used in a given modeling problem. Inclusion of high-
order terms may provide a better “fit” to the source data, but
they do not necessarily offer the best modeling solution.
Secondly, there are problems with the optimal selection of
the origin and the axes. For example, using the symmetry of
the gradient fields as predicted theoretically in the modeling
process clearly neglects any possible misalignment of the
gradient coils either due to a less perfect workmanship or
during use. Thirdly, global functions can sometimes lack the
“spatial flexibility” required to model local features
satisfactorily.

The densely sampled geometric distortion data using our
new 3D phantom can allow the use of local piecewise
interpolation to obtain the mapping functions. Therefore,
correction of the geometric distortion in conjunction with
this phantom can be carried out using a range of piecewise
interpolation methods. In fact, because of the high density of
the source data obtained with this phantom, we used the tri-
linear interpolation, an efficient interpolation method in 3D,
in the correction of the geometric distortions measured in
clinical MR systems. The results were extremely satisfactory
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[58]. A representative example of the residual geometric
distortion measured in the corrected MR phantom images in
a clinical MRI system is shown in Fig. 8. Here, the
maximum absolute positional deviations are all within 1 mm
with most falling within a fraction of 1 mm. A distinctive
feature of using local interpolation methods in conjunction
with the geometric distortion data measured with our new
phantom is that it works uniformly well in the entire
effective volume of the phantom as indicated in Fig. 8. This
is in strong contrast to the correction results obtained with
the vendors’ correction methods (see Fig. 5, for example,
where the correction became progressively less effective in
more remote slices at |z] > ~75 mm). Our correction also
performed equally well on significantly larger geometric
distortions due to the full effect of the gradient field
nonlinearity (using MR images acquired with vendor’s
correction off). For interested readers, see Ref. [58].

It is apparent that in conjunction with our 3D phantom,
other more sophisticated piecewise interpolation methods
can also be used. Well-known piecewise interpolation
methods include the thin-plate spline and multi-quadratic
method [59, 60]. Both these methods can provide highly
desirable smoothness and continuity with extremely high
flexibility. Originally, these models were developed in 2D.
In principle, they can be extended to 3D but will
significantly increase the computational time. In order to
keep the computational time low, a hybrid algorithm has
been developed combining a 2D interpolation in the xy plane
using either the thin-plate spline or the multi-quadratic
method, and a one-dimensional interpolation method, the
cubic spline interpolation, along the z axis. However, no
additional improvement was found in using this hybrid
interpolation  compared with using the tri-linear
interpolation. This is another strong indication of the
effectiveness and the accuracy demonstrated by our
phantom-based technique.
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Fig. (8). The maximum absolute positional deviations (®: | dX |max:, 02 | Y naw ¥: | 0Z Jmax N: drimay) of the residual geometric distortion
measured after correction using a new 3D phantom-based technique in a Siemens Quantum 1.5 T system.
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6. DISCUSSION

In contemporary clinical MR systems the nonlinearity of
the gradient fields is usually the major source of the
geometric distortion in structural MR images. With advanced
shimming technologies, the geometric distortion associated
with the inhomogeneity of the static field is small compared
with that arising from the gradient field nonlinearity. This is
particularly so in the new generation of MR systems
equipped with shorter gradient coils. As MRI technologies
are constantly being advanced, high demand for faster and
stronger gradients has led to the use of shorter gradient coils
with a compromise in gradient field linearity. As a
consequence, the reduced linearity in the gradient fields
generated by these shorter gradient coils has led to an
increase in the related geometric distortion.

It has now become a standard and accepted procedure as
a part of the image-generating process to include correction
for geometric distortion caused by gradient field
nonlinearity. Major vendors such as GE and Siemens all
have correction algorithms implemented in their MR
systems. These correction algorithms have significantly
reduced the geometric distortion caused by the gradient field
non-linearity. A complete analysis on vendors’ correction
algorithms in some representative clinical MR systems can
be found in Ref. [54]. However, there are some limitations to
these correction algorithms that are worthy of discussion.

Firstly, these correction algorithms only work in 2D in
the current version. As strongly emphasized in this mini-
review, geometric distortion in MRI is 3D in nature and
complete correction requires a 3D approach. This is
particularly important in MR volumetric imaging for
applications in spatial localization and volumetric studies. If
we take the GE TwinSpeed Zoom mode as a specific
example, we can show that (in Fig. 5) significantly large
geometric distortions along the z axis are still present
although the vendor’s correction has significantly reduced
the geometric distortion along the x and y axes (the
“original” geometric distortion along the x and y axes was
much greater [54]). Therefore, the MR images could still
contain large overall geometric errors (represented by dr in
Fig. 5). Obviously, this can cause detrimental effects if the
“partially” corrected MR images were to be used, for
example, for spatial localization in radio-surgery or in MR
image-based biopsy. Secondly, the vendor’s correction
algorithms do appear to have a limitation on the amount of
geometric distortion that can be corrected. If measured by
the residual geometric distortions after correction, the
distortions were still relatively large. In the systems
investigated by us recently, the maximum absolute positional
deviations within a volume of 240° mm® were still in the
range of ~2.0 mm to 7.0 mm [54]. The effectiveness of the
vendor’s correction also varied considerably and it became
much less effective in slices further away from the system’s
isocentre, especially for correcting large geometric
distortions arising from the gradient systems of the new
generation such as the GE TRM Zoom and Siemens Sonata.

It is difficult to speculate on the possible reasons for the
limitations shown by the vendor’s correction algorithms
because the details of the algorithms were unknown to us.
However, it is possible to suggest that these correction
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algorithms may be based on a set of parameterized data that
were measured at the time the gradient coils were
constructed. If this is the case, it is obvious that any temporal
changes in the gradient field nonlinearity during use cannot
properly be taken into account in the correction. It is also
likely that global mapping functions rather than piecewise
interpolations were used in the correction. This may give an
explanation why the correction algorithms performed less
effectively in outer areas [54].

The 3D phantom-based technique for measurement and
correction of geometric distortion recently developed by us
should overcome some of these shortcomings. Noticeably,
the two most attractive features of this technique are its
effectiveness and accuracy. As stated in section 3.3, the
novel design approach easily allows a dense array of control
points to be introduced within a given volume of interest
(limited only, in principle, by structural stability required in
the construction). Thus, the spatial variation of the geometric
distortion can be measured with sufficient details. Another
significant benefit is that piecewise interpolation can be used
in correction. The accuracy of this method has been
demonstrated to be extremely high [52]. For example, using
the maximum absolute positional deviations measured in the
corrected phantom images as an indication, they were all
below 0.8 mm with an average value of ~0.5 mm for the four
MRI systems investigated in a recent study [58]. The
exceptionally high performance demonstrated in the range of
geometric distortions present in these MR systems is a strong
indication of the successful use of the flexible piecewise
interpolation in the correction. Additionally, the measure-
ment using our 3D phantom is extremely simple. The
required single 3D phantom scan only takes about 10 to 30
minutes (depending on the sequence used and the averages
required) and it can be acquired unattended. When the
phantom MR image is acquired, the fully automated
algorithm that extracts the positions of the control points
takes a few minutes. Thus, this new technique can make
routine measurement at any desirable interval easily
possible.

Geometric distortion due to susceptibility difference has
not been discussed in this review. Briefly, this type of
geometric distortion can also be present in structural MRI.
Taking human brain as a specific example, large geometric
distortions due to the susceptibility difference can occur at
tissue/air boundaries. The difference in the relative
permeability values of air and tissue is approximately 9 ppm
which can result in significantly large geometric distortions
up to a few voxels in certain regions such as sinuses. It
should be noted that the geometric distortion due to
susceptibility difference is manifested similarly to that
caused by the static field inhomogeneity. For example, the
magnitude of the distortion is also dependent on the gradient
strength used. It can be suppressed by using stronger
gradients. Geometric distortion due to the susceptibility
difference is obviously field-dependent and it increases at
high magnetic fields. In fact, the susceptibility difference
caused geometric distortion has now become a major issue
for MR imaging at 3T or above.

In summary, geometric accuracy in MRI is still an issue
in magnetic resonance imaging today. The hardware-related
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geometric distortion in contemporary MR systems has been
reviewed in this paper, especially in relation to structural
MRI. High level of geometric distortion can still be present
in today’s MR systems. Although not normally an issue in
clinical examinations, geometric distortion in MRI is a major
concern in applications where high precision is required. To
reduce geometric distortion due to MR hardware to within a
fraction of one millimeter in structural MR images is still
some distance away. This level of accuracy may be required
in certain applications such as spatial localization in
radiation treatment and MR image-based volumetric
measurement. For example, in the case of spatial localization
in treating brain tumors, geometric accuracy of better than 1
mm is often regarded as the minimum requirement. For MR
volumetric imaging, we have seen structural MRI play an
increasingly important role in the study of brain diseases in
recent years. A representative example is the use of
structural MRI in the study of Alzheimer’s disease, which
has resulted in a large volume of MRI literature in this very
important research area. Many quantitative studies on brain
atrophy and its progression rate have been reported.
However, there have been some concerns on the quality of
the published data. One major concern is in respect of image
quality control. To date, there appears to have been little
effort devoted to this issue. A general problem in any image-
based quantification like using MRI is the difficulty in
estimating the uncertainties (or the errors) associated with
the extracted volumes or areas. This is an extremely
challenging problem. It has begun to receive some attention
recently. Clearly, to have an effective method which can
measure and correct the geometric distortion associated with
structural MR images with sub-millimeter accuracy is an
important step in successfully addressing this problem.
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