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Abstract

Recently, a 3D phantom that can provide a comprehensive and accurate measurement of the geometric distortion in MRI has been

developed. Using this phantom, a full assessment of the geometric distortion in a number of clinical MRI systems (GE and Siemens) has been

carried out and detailed results are presented in this paper. As expected, the main source of geometric distortion in modern superconducting

MRI systems arises from the gradient field nonlinearity. Significantly large distortions with maximum absolute geometric errors ranged

between 10 and 25 mm within a volume of 240�240�240 mm3 were observed when imaging with the new generation of gradient systems

that employs shorter coils. By comparison, the geometric distortion was much less in the older-generation gradient systems. With the

vendor’s correction method, the geometric distortion measured was significantly reduced but only within the plane in which these 2D

correction methods were applied. Distortion along the axis normal to the plane was, as expected, virtually unchanged. Two-dimensional

correction methods are a convenient approach and in principle they are the only methods that can be applied to correct geometric distortion in

a single slice or in multiple noncontiguous slices. However, these methods only provide an incomplete solution to the problem and their value

can be significantly reduced if the distortion along the normal of the correction plane is not small.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Geometric distortion in MRI can arise from a variety of

sources. Apart from the tissue-dependent chemical shift

and susceptibility differences, the major hardware-related

sources contributing to geometric distortion in MRI are

gradient field nonlinearity and the static field inhomoge-

neity. In the superconducting MRI systems equipped with

sophisticated shimming coils, the geometric distortion due

to the static field inhomogeneity can be expected to be

small when compared with that arising from the gradient

field nonlinearity. For example, the shimming technologies

that have been developed in recent years now easily allow

the field homogeneity inside the diameter spherical volume

(DSV) to be maintained within a few hertz at a proton

frequency of 63.87 MHz (1.5T). A field inhomogeneity of

10–15 Hz would only cause a maximum geometric error of
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less than 0.2 mm in the presence of a gradient of 2 mT/m.

By comparison, the geometric distortion arising from the

gradient field nonlinearity can be much larger and can

cause serious concerns in certain MRI applications where

high accuracy and precision are required.

The gradient field nonlinearity has become more of an

issue in the new generation of gradient systems that are

characterized by fast slew rates (short gradient rise times). In

the design of the new generation of the gradient systems,

gradient designers employ short gradient coils. As a

consequence, the gradient field nonlinearity has been

compromised. The problem of increased gradient field

nonlinearity in the new generation of gradient systems has

recently begun to receive attention, for example, with regard

to its effect on diffusion-weighted MRI [1,2] and on phase

contrast MRI [3,4].

This problem of gradient field nonlinearity became a

consideration when trying to expand our long-running MRI

volumetric study on brain atrophy due to Alzheimer’s

disease and normal aging [5–7] when employing newly
aging 22 (2004) 1211–1221
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acquired Siemens Sonata 1.5-T MRI systems. Motivated by

the lack of a satisfactory method for measuring geometric

distortion in three dimensions, a novel 3D phantom-based

technique was developed that provides a comprehensive and

accurate measurement of the geometric distortion in MRI

due to gradient field nonlinearity and static field inhomoge-

neity [8]. As this technique can provide unprecedented detail

and accuracy of the geometric distortion in MRI, we have

measured the geometric distortion in a range of clinical MRI

systems to which we have access. These include systems

equipped with gradient systems of varied length-to-diameter

ratios. In addition, we have evaluated geometric distortion

both with and without vendors’ correction methods in order

to evaluate the effectiveness as well as to demonstrate the

shortfall of these correction methods. We report the findings

in this paper (Part I ). In the following paper (Part II ), we will

present results using a correction method that has been

developed based on the phantom-mapped distortion data.

The present study makes no attempt to accentuate any

comparison between different MRI systems in terms of the

geometric distortion, rather it is aimed to give a compre-

hensive assessment of the geometric distortion in each

individual MRI system, or more precisely, each gradient

system. It is hoped that the information provided in the

present study can act as a useful benchmark concerning the

use of a particular type of MRI system for certain

applications in which high precision and accuracy are of

concern. Geometric distortion due to gradient field nonlin-

earity is always present in any MRI system. The gradient

systems in MRI are often designed to meet certain

specifications. The two key performance indexes, gradient

field linearity and slew rate associated with a MRI gradient

system, are competing factors and in principle they cannot

bperform equally wellQ in any given gradient system. In

gradient design, a compromise in gradient linearity is

unavoidable if the required slew rate is to be achieved and

this appears to be the case in the design of the new

generation of the MRI gradient systems that have the

principal design criteria of speed.
2. Method

2.1. The 3D phantom

The geometric distortion was measured using a recently

developed phantom-based technique [8]. A novel feature of

this technique is the use of a 3D phantom in which the

control point positions (the markers) are defined along all

three orthogonal axes. This was achieved by using a concept

that a point in 3D space can be defined by using three

orthogonal planes. This novel approach overcomes the

shortfall of previously developed 2D geometric MRI

phantoms in which only two coordinates of the control

points in the imaging plane are defined and the coordinate

along the axis normal to the imaging plane is undefined, and

as a consequence, this coordinate is unmeasurable [9–16]. A
phantom based on the new design and built to fit into the

body coil in clinical MRI scanners contained an array of

10,830 (19�19�30) points spanning an effective volume of

257.04�259.02�261.0 mm3 (with intervals of 14.28, 14.39

and 9.00 mm along the respective x-, y- and z-axes). For

more details of this phantom, see Ref. [8].

2.2. Assessment of geometric distortion

Geometric distortion in three dimensions can be charac-

terized by the positional deviations (geometric errors)

dx x; y; zð Þ ¼ xVx; y; zð Þ � x

dy x; y; zð Þ ¼ yVx; y; zð Þ � y

dz x; y; zð Þ ¼ zVx; y; zð Þ � z

dr x; y; zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p

where xV(x,y,z), yV(x,y,z) and zV(x,y,z) are the coordinates in

the distorted space ( the image space) and x, y and z are the

corresponding coordinates in the undistorted space. In the

phantom-based measurement, the geometric distortion is

mapped through the correspondence of the control point

positions between the distorted image space and their true

positions defined by the geometry of the phantom (undis-

torted space). In the present work, this correspondence can

be described as follows

dxijk ¼ xVijk � xijk

dyijk ¼ yVijk � yijk

dzijk ¼ zVijk � zijk

drijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxijk
� �2 þ dyijk

� �2 þ dzijk
� �2q

i ¼ 1 N 19; j ¼ 1 N 19; k ¼ 1 N 30ð Þ

where xijk, yijk and zijk are the coordinates of the control

points defined by the geometry of the phantom, and xVijk,
yVijk, and zVijk are the corresponding coordinates of the

control points measured in the distorted images of the

phantom. Given the geometric distortion measured at the

control points, the geometric distortion at any other point

within the effective volume of the phantom can be

approximated by a 3D interpolation method. In the present

study, we simply used the trilinear interpolation method for

calculating the positional deviations for any point other than

the control points within the effective volume of the

phantom.

In this study, the geometric distortion was assessed for

two specific volumes of interest (VOI). The first VOI

studied was a cube having a volume of 240�240�240

mm3. This VOI is denoted as VOIc(240). The second VOI

studied was a sphere with a radius of 95 mm and it is
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denoted as VOIs(95). These two VOIs are considered to be

representative for body- and neuro-imaging applications,

respectively. Both VOIs have their centers coinciding with

the isocenter of the magnet. The x-, y- and z-axes are taken,

respectively, along the left-to-right, anterior-to-posterior and

the head-to-foot directions. The origin of the coordinate axis

system is also taken to be at the isocenter of the magnet.

The following parameters were used to characterize the

geometric distortion:

1. maximum absolute deviations within axial planes (the

xy plane) at a set of evenly sampled locations along the

z-axis within the cubic VOI;

2. maximum absolute deviations on the surface of spheres

at a set of sampled radii within the spherical VOI.

3. the mean (l), standard deviation (r) and maximum

absolute deviations (max) within the cubic VOI;

4. the mean, standard deviation and maximum absolute

deviations within the spherical VOI.

These are some of the parameters used in a comprehen-

sive characterization scheme recently developed for assess-

ment of geometric distortion in MRI [17]. Comprehensive

sampling schemes have been developed for obtaining these

statistical and maximum absolute deviations [17]. In brief,

for the specified cubic VOI and the planes, sampling was

made along the three axes with the same sampling interval

of 5 mm. For the spherical VOI, a special sampling scheme

that can give the most homogeneous sampling within a

sphere was used. The use of these sampling methods

ensures that the boundary surfaces of the VOIs are properly

represented. More details about these sampling schemes

have been given elsewhere [17].

2.3. Image processing

A key aspect in the phantom-based technique is the

development of a fully automated and extremely robust

algorithm for measuring the control point positions in theMR

images of the phantom. The details of this algorithm have

been given previously [8]. In brief, this algorithm makes the

use of image edge features for defining the positions of the

planes from which the coordinates of the control points are

derived. In doing so, it employs a number of 3D image

processing tools including the use of extended 3D Prewitt

edge detectors [18]. In addition, the first moments are used

that allow the control point positions to be measured with

subvoxel accuracy. Typically, the coordinates of the control

points can be measured with an average error between 0.1

and 0.2 mm, which is only a fraction of the voxel’s

dimensions of the phantom images.

2.4. MRI systems and MR acquisition protocols

Four 1.5-T MRI systems were investigated in the present

study: a Siemens Sonata, a Siemens Quantum, a GE Signa

EchoSpeed Plus equipped with a Body Resonance Module

(BRM) gradient set and a GE Signa TwinSpeed which is
equipped with two sets of gradient coils, TRM (Twin

Resonance Module) Zoom and Whole. The phantom images

acquired on the Siemens Sonata and Quantum systems used

the same 3D imaging sequence, coded as t1_Vibe_ fs_tra by

Siemens. The following imaging parameter values were

used: TE=4.50 ms, TR=10 ms, flip angle 128, receiver

bandwidthF16.6 kHz, FOV=333.0�333.0 mm, 256 slices,

slice thickness 1.3 mm, slice gap 0 mm, acquisition matrix

256�256. The corresponding voxel’s dimensions were

1.305�1.305�1.300 mm. The phantom images acquired

on the GE TwinSpeed and EchoSpeed Plus systems used a

spin echo sequence, designated by GE as axial T1 FSE-XL,

with the following imaging parameters: TE=10.1 ms,

TR=640 ms, echo train length 2, flip angle 908, receiver
bandwidthF25 kHz, FOV 330.0�330.0 mm, 240 slices,

slice thickness 1.3 mm, slice gap 0 mm, acquisition matrix

256�256. The corresponding voxel’s dimensions were

1.289�1.289�1.300 mm.

All the phantom images were acquired using the

system’s body coil. Because of the relatively low sensitivity

of this coil, its large spatial variability in signal intensity

and the relatively small voxel size (~2.2 mm3) employed in

the acquisition of the phantom images, averages were

necessary in order to achieve a reasonable signal-to-noise

ratio (SNR) to ensure a successful extraction of the control

point positions in the entire imaging volume. In the

acquisition of the phantom images, between two and six

averages were used. The use of different averages in the

acquisition was partly to create a range of phantom images

with different SNR levels to provide a further test of the

robustness of this recently developed phantom-based

technique [8].

For the Siemens systems, the 3D phantom could be

easily positioned with its geometric center near the systems’

isocenter. For the GE systems, due to the restricted space

along the vertical axis (relatively high bed position), the

phantom’s geometric center was ~25 mm away from the

isocenter along the vertical axis ( y ). The cubic VOI used for

assessing the geometric distortion in the GE systems was

slightly modified along the y-axis and the following size

{(�120,120), (�95,120), (�120,120)} was used.
3. Results

In Fig. 1, a sequence of axial slices of the phantom MR

image between z=92.3 and 98.8 mm is shown in the top

row. Apart from the obviously visible distortions in the slice

plane (the xy plane), the geometric distortion along the z-

axis (normal to the slice plane) is also present by showing a

characteristic distortion pattern arising from the gradient

field nonlinearity of a typical Z gradient coil, the so-called

potato chip warping. The originally flat surface of a grid

panel is now warped and becomes spherically bshapedQ as
indicated by the circles shown in the successive slices with

decreasing radius. The extracted positions of the control



Fig. 1. A sequence of axial slices of the phantom MR image that traverse the surface of a grid panel of the phantom (top row), with the extracted control points

(marked as squares) overlaid on the original images (bottom row).
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points on the surface of this particular grid panel marked as

white squares are overlaid on the original images ( the

bottom row). As shown, the entire warped image of the flat

panel surface extends over six slices along the z-axis. This

corresponds to a 6.5-mm positional shift along the z-axis. In

fact, the control points marked in the center of the first slice

were from a neighboring panel surface, which is 9 mm away

from those appearing on the corners. In the method used in

the present study, it is the differences between these control

point positions measured in the distorted images along all

three orthogonal axes and their true positions defined by the

geometry of the 3D phantom that form a detailed assessment

of the geometric distortion. In the following discussion, the
Fig. 2. The maximum absolute deviations (!, |dx |max; o, |dy |max; z, |dz|max;5, d

system: (a) in axial planes on images acquired with no vendor’s correction; (b) w

different radius (no correction); (d) on surface of spheres of different radius (with
geometric distortion is assessed in each of the MRI systems

that formed the subject of this study.

3.1. Siemens Sonata

The results of the maximum absolute deviations of the

geometric distortion measured in the axial planes for the

Sonata system are shown in Fig. 2a (no correction) and Fig.

2b (with vendor’s correction applied in the xy plane). The

geometric distortion for the Sonata system with no

correction is relatively large with the maximum absolute

deviations of 10–11 mm occurring in slices at z=F120 mm.

This represents a deviation of 8–9% in relative terms.

Clearly, the gradient field nonlinearity along both +z and �z
rmax) of the geometric distortion measured in a Siemens Sonata 1.5-T MRI

ith vendor’s correction applied in the xy plane; (c) on surface of spheres of

correction).



Table 1

Summary of the statistical data (l, r, max) of the absolute deviations along

x-, y- and z-axes and in the positional displacement (r) measured within a

cubic VOI (VOIc(240): {(�120,120), (�120,120), (�120,120)}) and a

spherical VOI (VOIs(95); R=95 mm) in a 1.5-T Siemens Sonata system

VOI Vendor’s

correction

Direction l (mm) r max

(mm)

VOIc(240) No x 1.76 1.87 11.1

y 1.50 1.60 10.4

z 1.20 1.18 9.3

r 2.98 2.32 11.4

Yes x 0.69 0.61 3.3

y 0.46 0.40 2.6

z 1.20 1.19 9.3

r 1.65 1.16 9.6

VOIs(95) No x 0.51 0.70 4.0

y 0.47 0.47 3.4

z 0.29 0.24 1.6

r 0.88 0.75 4.1

Yes x 0.41 0.50 2.5

y 0.33 0.29 1.4

z 0.29 0.24 1.6

r 0.70 0.50 2.6
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axes becomes considerably worse further away from the

isocenter. In the central portion of the VOI ( |z|V100 mm),

the maximum absolute deviations are ~6 mm. With the

vendor’s correction method applied in the xy plane, the

distortion along the x and y in the entire VOI was

significantly reduced with the maximum absolute deviations

being about 2 mm or less, except in those slices at the edges

of the VOI (z=F120 mm) where the maximum absolute
Fig. 3. The maximum absolute deviations (!, |dx |max; o, |dy |max; z, |dz |max;5, dr

system: (a) in axial planes on images acquired with no vendor’s correction; (b) w

different radius (no correction); (d) on surface of spheres of different radius (with
deviations were still large. As expected, the vendor’s 2D

correction method did not correct for any distortion along

the axis normal to the correction plane (the z-axis). In Fig.

2c and d, the maximum absolute deviations measured on the

surface of the spheres with different radii are shown without

and with the vendor’s correction, respectively. Before

correction (Fig. 2c), the maximum absolute deviations

were approximately 1 mm within the sphere of r=50 mm

and the distortion increased quite dramatically as the radius

increased from 50 to 95 mm. With the correction applied in

the xy plane, the maximum absolute deviations were

reduced as shown in Fig. 2d. The maximum and the

statistical analysis of the absolute deviations for the two

VOIs are summarized in Table 1.

3.2. Siemens Quantum

The Siemens Quantum gradient system is longer than the

Sonata’s and has a longer rise time and, therefore, the

gradient field nonlinearity in this system is expected to be

much less. This was confirmed by our measurement. The

maximum absolute deviations measured in the Siemens

Quantum system are shown in Fig. 3. Overall, the maximum

absolute distortions are significantly less than on the

Siemens Sonata. The maximum and mean absolute devia-

tions for the two VOIs are summarized in Table 2. Within

the cubic VOI, the maximum absolute deviations are ~4.0

mm or less and within the spherical VOI, the maximum

absolute deviations are 2.5 mm or less. However, a close

examination of Fig. 3a can reveal that the gradient linearity
max) of the geometric distortion measured in a Siemens Quantum 1.5-T MRI

ith vendor’s correction applied in the xy plane; (c) on surface or spheres of

correction).



Table 2

Summary of the statistical data (l, r, max) of the absolute deviations along

x-, y- and z-axes and in the positional displacement ( r ) measured within a

cubic VOI (VOIc(240): {(�120,120), (�120,120), (120,120)}) and a

spherical VOI (VOIs(95): R =95 mm) in a 1.5-T Siemens Quantum system

VOI Vendor’s

correction

Direction l (mm) r max (mm)

VOIc(240) No x 0.52 0.50 3.3

y 0.63 0.45 3.8

z 0.90 0.56 4.2

r 1.38 0.57 4.8

Yes x 0.51 0.49 2.7

y 0.52 0.36 2.5

z 0.92 0.55 4.2

r 1.33 0.54 4.4

VOIs(95) No x 0.41 0.45 1.5

y 0.50 0.35 1.8

z 0.69 0.37 1.9

r 1.09 0.42 2.3

Yes x 0.41 0.45 1.6

y 0.45 0.30 2.1

z 0.71 0.36 1.9

r 1.07 0.40 2.3
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in the X and Y gradients just begins to degenerate at the

edges of the cubic VOI (at z =F120 mm). Another

noticeable difference exhibited by the Quantum system is

that the vendor’s correction method when applied in the xy

plane made very little improvement [except at the edges of

the VOI where the maximum absolute deviations (|dx|max

and |dy|max) were reduced to ~2.0 from 4.0 mm].
Fig. 4. The maximum absolute deviations (!, |dx |max; o, |dy |max; z, |dz |max;5, d

MRI system (BRM): (a) in axial planes on images acquired with no vendor’s corre

spheres of different radius (no correction); (d) on surface of spheres of different
3.3. GE Signa EchoSpeed Plus BRM

For the X and Y gradients, the geometric distortion in this

system showed very similar behavior to that for the Siemens

Sonata system. The spatial characteristics of the geometric

distortion with no correction are shown in Fig. 4a. The

distortion along the x- and y-axes is relatively small in the

central region of the magnet DSV ( |z|V90 mm), ~3 mm. The

gradient field nonlinearity in the X and Y gradients becomes

worse as |z| increases from 90 mm. A significant feature of

this gradient system is that the Z gradient shows exception-

ally good linear behavior within the cubic VOI. The

maximum absolute deviation dzmax was less than 2.0 mm

for the entire cubic VOI. As shown in Fig. 4b, the small

gradient nonlinearity of the Z gradient has made the 2D

correction method applied in the xy plane extremely effective

in terms of reducing the overall geometric distortion (dr).

This was not the case for the Siemens Sonata system in

which the gradient field nonlinearity of the Z gradient was

significantly larger (see Fig. 2a). The maximum absolute

deviations within the spherical VOI (VOIs(95)) before and

after correction are shown, respectively, in Fig. 4c and d. The

statistical and maximum absolute deviations within the two

VOIs are summarized in Table 3.

3.4. GE Signa TwinSpeed TRM (Zoom)

Of the MRI systems investigated and for the two VOIs

studied, this gradient set has the largest nonlinearity in the X

and Y gradients and some unusual spatial characteristics were
rmax) of the geometric distortion measured in a GE EchoSpeed Plus 1.5-T

ction; (b) with vendor’s correction applied in the xy plane; (c) on surface of

radius (with correction).



Table 3

Summary of the statistical data (l, r, max) of the absolute deviations along

x-, y- and z-axes and in the positional displacement ( r ) measured within a

cubic VOI (VOIc(240): {(�120,120), (�95,120), (�120,120)}) and a

spherical VOI (VOIs(95): R =95 mm) in a 1.5-T GE Signa EchoSpeed Plus

system (BRM)

VOI Vendor’s

correction

Direction l (mm) r max

(mm)

VOIc(240) No x 1.56 1.50 8.5

y 1.42 1.45 8.5

z 0.35 0.32 2.6

r 2.37 1.85 8.9

Yes x 0.63 0.50 2.5

y 0.60 0.42 2.3

z 0.39 0.34 2.7

r 1.09 0.50 3.4

VOIs(95) No x 0.57 0.58 3.6

y 0.52 0.47 2.7

z 0.17 0.13 0.9

r 0.88 0.64 3.7

Yes x 0.47 0.42 2.0

y 0.43 0.30 1.5

z 0.17 0.14 0.9

r 0.75 0.41 2.1

able 4

ummary of the statistical data (l, r, max) of the absolute deviations along

-, y- and z-axes and in the positional displacement ( r ) measured within a

ubic VOI (VOIc(240): {(�120,120), (�95,120), (�120,120)}) and a

herical VOI (VOIs(95): R =95 mm) in a 1.5-T GE TwinSpeed system

oom mode)

OI Vendor’s

correction

Direction l (mm) r max

(mm)

OIc(240) No x 4.45 4.56 25.1

y 3.46 3.62 20.1

z 1.07 1.24 9.7

r 6.29 5.37 25.8

Yes x 0.76 0.51 3.8

y 0.68 0.62 7.0

z 1.08 1.23 9.7

r 1.69 1.23 11.7

OIs(95) No x 1.30 1.15 6.4

y 1.01 0.92 5.2

z 0.30 0.23 1.2

r 1.88 1.22 6.5

Yes x 0.59 0.43 2.1

y 0.39 0.25 1.5

z 0.28 0.22 1.1

r 0.86 0.37 2.2
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also observed. As shown in Fig. 5a (also see Table 4), the

maximum absolute deviations along the x- and y-axes

exceeded 20 mm in VOIc(240) and also showed some

uncharacteristic behavior in spatial dependence. As shown

in Fig. 5a in axial slices close to the isocenter, the maximum

absolute deviation along the x- and y-axes (|dxmax| and
Fig. 5. The maximum absolute deviations (!, |dx |max; o, |dy |max; z, |dz |max;5, d

system (Zoom mode): (a) in axial planes on images acquired with no vendor’s corr

spheres of different radius (no correction); (d) on surface of spheres of different
T

S

x

c

sp

(Z

V

V

V

|dymax|) first peaks at 18 and 14 mm, respectively. Then, the

distortion decreases when moving away from the isocenter

along both the +z and�z axes. For both theX and Y gradients

it reaches a minimum of ~6 mm at z=~F75 mm. In more

remote slices, the nonlinearity becomes worse again and

increases more rapidly. Compared with the X and Y gradients,
rmax) of the geometric distortion measured in a GE TwinSpeed 1.5-T MRI

ection; (b) with vendor’s correction applied in the xy plane; (c) on surface of

radius (with correction).



Fig. 6. The maximum absolute deviations (!, |dx |max; o, |dy |max; z, |dz|max;5, drmax) of the geometric distortion measured in a GE TwinSpeed 1.5-T MRI

system (Whole mode): (a) in axial planes on images acquired with no vendor’s correction: (b) with vendor’s correction applied in the xy plane; (c) on surface of

spheres of different radius (no correction); (d) on surface of spheres of different radius (with correction).

Table 5

Summary of the statistical data (l, r, max) of the absolute deviations along

x-, y- and z-axes and in the positional displacement ( r) measured within a

cubic VOI (VOIc(240): {(�120,120), (�95,120) (�120,120)}) and a

spherical VOI (VOIs(95): R =95 mm) in a 1.5-T GE TwinSpeed system

(Whole mode)

VOI Vendor’s

correction

Direction l (mm) r max

(mm)

VOIc(240) No x 1.64 1.51 9.5

y 1.38 1.29 7.8

z 0.44 0.35 2.4

r 2.44 1.71 9.9

Yes x 0.97 0.67 3.6

y 0.69 0.47 2.7

z 0.46 0.36 2.5

r 1.42 0.65 4.5

VOIs(95) No x 0.77 0.60 3.5

y 0.56 0.42 2.5

z 0.27 0.21 1.1

r 1.11 0.58 3.5

Yes x 0.81 0.57 2.6

y 0.46 0.35 1.8

z 0.29 0.22 1.2

r 1.09 0.50 2.7
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the nonlinearity in the Z gradient of this system is much less.

The maximum absolute deviations along the z-axis are less

than 10 mm within VOIc(240).

In Fig. 5b, the maximum absolute deviations measured

with the vendor’s correction method applied in the xy plane

are presented (note that the vertical scale is different from

that used in Fig. 5a). It is interesting to note that within the

window |z|V75 mm, the correction was effective with the

maximum absolute deviations ( |dxmax| and |dymax| ) reduced

to ~2 mm or less. However, in more remote slices (|z| N75

mm), the correction became much less effective. At the

VOIc(240) boundary of |z|=120 mm, |dxmax| is around 4 mm

and |dymax| ~7 mm. It seems the correction method in the xy

plane in this system has been optimized for the window of

| z |V75 mm. Within the spherical VOI, VOIs(95), the

correction method applied in the xy plane is effective with

the maximum absolute deviations all reduced to ~2.0 mm or

less (see Fig. 5(d) and Table 4).

3.5. GE Signa TwinSpeed TRM (Whole)

The geometric distortion associated with this system is

very similar to that found in GE’s BRM gradient set. The

maximum absolute deviations within the cubic VOI without

and with vendor’s correction are given in Fig. 6a and b,

respectively, and that with the spherical VOI (VOIs(95))

given in Fig. 6c and d. The statistical and maximum

absolute deviations are summarized in Table 5.

In order to verify if the geometric distortion due to the

static field inhomogeneity in the superconducting magnets
equipped with modern shimming technologies is negligibly

small, we have analyzed separately the geometric distortion

in the Siemens Sonata system for contributions from the

gradient field nonlinearity and that from the static field

nonlinearity. The separation of these two different sources

was made by using two sets of phantom images, one

acquired with the readout (frequency encoding) direction
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along the x-axis and the other with the readout along the y-

axis [10]. The results showed that the geometric distortion

that arises from the static field inhomogeneity was indeed

negligibly small. The mean absolute geometric error was

only 0.05 mm with a standard deviation of 0.14. As the time

available for using the other clinical systems investigated in

this study was limited, no such separate measurements were

carried out for the other systems. However, we believe the

static field ingomogeneity in the other systems should also

be negligibly small. Therefore, the above-presented geo-

metric distortion data included contributions from the

gradient field nonlinearity and possibly from static field

inhomogeneity, but the distortion from the latter source is

negligibly small.
4. Discussion

Clearly, the problem of the gradient field nonlinearity in

the new generation of high-speed gradient sets that employ

short coils is much greater than in the previous generation of

the gradient systems. Consequently, the geometric distortion

caused by the gradient field nonlinearity in such gradient

systems is much larger. As clearly shown in the present

study, the magnitude of the gradient field nonlinearity varied

considerably from system to system. If the maximum

absolute deviations can be used as an indicator, the

magnitude of the gradient field nonlinearity in the five

gradient sets investigated differed approximately by five-

fold. Within the cubic VOI of 240�240�240 mm3, the

maximum absolute deviations in the MRI systems equipped

with the gradient systems having fast rise times ranged

between ~10 and 25 mm. In relative terms, these deviations

represent geometric errors of ~8% to ~20%. By compari-

son, in the MRI systems equipped with gradient systems

having much longer rise times, such as the Siemens

Quantum system, the maximum absolute deviations fall in

the range of 2–4 mm, corresponding to geometric errors of

2% to ~3%. Therefore, correction for geometric distortion

due to the significantly large gradient field nonlinearity

induced by the gradient systems when using gradient sets

having a small length-to-diameter ratio is necessary.

Consequently, major MRI vendors such as GE and

Siemens provide their customers with correction methods

applied in 2D that have been integrated as part of the

image postprocessing. The vendor’s correction has made

significant improvement especially for the GE’s TRM

Zoom system. For example, the maximum absolute

deviation along the x-axis within VOIc(240) was reduced

from 25.1 to 3.8 mm (see Table 4). It should be pointed

out, however, that if the correction were applied in the xz

or yz plane, the effectiveness of the correction would be

significantly reduced as the gradient field nonlinearity

along the normal to the correction plane in these two cases,

in the Y and X gradients, respectively, is much greater than

in the Z gradient.
As stated, the current correction methods offered by both

GE and Siemens are 2D methods. The reason for this was

probably that correction for geometric distortion in 2D was

the only possible method for correcting geometric distortion

in a single slice or in multiple noncontiguous slices. In

principle, use of a 2D method to correct geometric distortion

in MRI is an incomplete approach and it can only be

expected to work well when the geometric distortion along

the normal of the correction plane is small. If the geometric

distortion along the normal of the imaging plane is large,

correction in 2D (within the imaging plane) offers only an

approximation and its value can be significantly reduced.

This point can be better appreciated in image-based spatial

localization used in stereotactic radiosurgery or radiothera-

py. In such applications, the geometric errors in the

displacement vector, dr, matters most. In order to determine

dr, clearly, geometric errors along all three orthogonal

directions (dx, dy, dz) need to be measured. When employ-

ing high-speed gradient sets, the representative cases have

demonstrated the limitation of the 2D correction methods.

For example, as shown in Table 1, the 2D correction applied

in xy plane reduced the distortion along the x- and y-axes

from more than 10 to around 3.0 mm, but the maximum

absolute distortion drmax was reduced only marginally, from

11.4 to 9.6 mm. Therefore, any correction made in 2D

requires care in the interpretation and application as the true

nature of the geometric distortion in MRI is 3D.

For neuro-imaging applications of MRI, geometric dis-

tortion is a particularly concerning issue. The comprehensive

assessment carried out in the present study for the spherical

VOI, VOIs(95), should provide useful information of when

care needs to be exercised for neuro-imaging applications.

The results suggest that the gradient systems designed for

MRI are generally optimized to have the most linear regions

around the system’s isocenter. For example, in the GE TRM

Zoom system, the maximum absolute deviations within

VOIc(240) exceeded 25 mm whereas in VOIs(95), they were

~6.0 mm or less (see Table 4). A more satisfactory finding in

the present study is that with the vendor’s correction applied

in the xy plane, the maximum absolute deviations within

VOIs(95) are all below ~2.5 mm (see Tables 1–5). It can be

concluded that for neuro-imaging applications with the

imaging object optimally positioned at the isocenter and the

2D correction method applied in the xy plane, the maximum

absolute deviations in the investigated MRI systems can be

minimized to be around 2 mm or less. Whether such a degree

of accuracy is sufficient is a clinical decision.

The geometric distortion in the MRI systems studied

does, however, increase significantly in areas more remote

from the system’s isocenter and this is clearly shown in the

results for the high-speed gradient systems (see Figs. 2a and

5a). For example, the rate of change in drmax along the z-axis

(drmax/z ) at the boundaries of VOIc(240) (z=F120 mm)

was ~0.6 for GE TRM Zoom and ~0.4 for Siemens Sonata.

In other words, for every 5 mm further away from the

isocenter along the z-axis, drmax would increase 3 and 2 mm,
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respectively, in these two systems. It is advisable that MRI

users should be aware that for imaging peripheral areas,

significantly large geometric distortions can be present.

It is important to note that the use of the positional

deviations to characterize the geometric distortion as

adopted in the present study is slightly different from that

recommended by AAMP [9] and by The Institute of Physics

and Engineering in Medicine (United Kingdom, [19]). In

these recommended methods, the geometric distortion in

MRI is measured by the difference in distance between a

pair of points measured in the distorted image space and the

true distance between them. This measurement procedure

has a disadvantage in that the points used are not well

defined. In using the positional deviations, however, the

distortion is uniquely defined by a point’s true position and

its displaced position in the distorted image space.

Therefore, the distortion characterized in this way offers a

common platform on which a standard procedure for

assessing the geometric distortion in MRI can be developed.

The detailed geometric distortion data gathered in the

present study also show some indications of the limitation of

the vendor’s correction methods. Firstly, for correcting large

geometric distortions present in gradient systems having a

short rise time, the effectiveness of the correction varied

considerably and became much less effective in slices

further away from the system’s isocenter. This has been

shown for both the GE TRM Zoom and Siemens Sonata

systems. Secondly, there appears to be an ultimate limitation

on how much improvement the vendor’s correction methods

could achieve. With the correction methods applied in the xy

plane, the maximum absolute deviations measured in the

bresidualQ distortion in the corrected phantom images were

still relatively large, between ~2.0 and 7.0 mm within a

volume of 240�240�240 mm3. Thirdly, the data on the

Quantum system presents an interesting case. For this

system, the vendor’s correction method did not appear to

have made any noticeable improvement on correcting the

geometric distortion. On the other hand, the geometric

distortion in this system is overall the smallest with the

maximum absolute distortions of ~4 mm or less. The

observation of virtually no improvement in this particular

case may indicate that the ultimate improvement the

vendor’s correction could achieve had been reached.

It is rather difficult to speculate on the factors that

affected the ultimate performance of the vendor’s correction

methods as the details of these methods were not known to

us. However, the recent studies on the possible effects of

gradient field nonlinearity in MRI [2,4] may suggest the

vendor’s correction methods involve the use of a spherical

harmonics expansion to approximate the magnetic fields

generated by the gradient coils [20,21]. If this is the case,

there are a number of possible sources that could contribute

to errors that may ultimately impose some limitations on the

effectiveness of the correction. Firstly, the use of spherical

harmonics expansion can suffer from a truncation effect as

only a limited number of terms might have been included in
the actual implementation of a spherical harmonics expan-

sion. Secondly, the use of the magnetic fields either

calculated from the coils geometry or derived from the

calibration settings (normally obtained at the time of

installation or during the last major service) clearly does

not take into account any temporal variability of the

gradients during use. It does not appear to be appreciated

that the noise that arises from gradient pulsing is due to wire

movement and there may well be a long-term temporal

variation in the nonlinearity. Thirdly, a possible violation of

the quasi-static approximation of the current distribution

model can also lead to some errors [20].

The recently developed phantom-based technique that

was used in the present study can overcome these shortfalls.

In particular, provision of a comprehensive spatial mapping

of the geometric distortion allows the correction to be made

using more desirable methods such as splines. With the

possibility of using piecewise interpolation methods, the

spatial variability of the geometric distortion can be

modeled in a more satisfactory manner. This has been

demonstrated in the following paper (Part II) where the

results using a new correction method [8] based on the

phantom-mapped geometric distortion data are presented

and discussed.
5. Conclusions

Assessment of the geometric distortion in a range of

clinical 1.5-T MRI systems has been carried out using a new

3D phantom-based technique. This work represents the most

comprehensive assessment of the geometric distortion in

MRI systems to date. Among the investigated systems, the

geometric distortion is much larger in gradient systems in

which short coils are used. By comparison, geometric

distortion in the gradient systems having a larger length to

diameter ratio is much less. The geometric distortion data

obtainable with this technique as illustrated in this paper on

four representative MRI systems offer unprecedented details

encompassing both the overall and spatial characteristics of

the geometric distortion. The detailed analysis of the

geometric distortion within a cubic VOI and a spherical

VOI should provide more useful and specific information in

relation to body- and neuro-imaging applications. In addition,

the effectiveness of the vendor’s 2D correction methods has

been thoroughly and quantitatively investigated. While these

methods canmake significant improvements in the correction

of the considerably large geometric distortion found in high-

speed gradient systems, their limitations are also clearly

demonstrated in the present study. For example, for the

Siemens Quantum system which showed the least geometric

distortion, there was no noticeable improvement overall with

the vendor’s correction method. In addition, these correction

methods appear to have been optimized for a volume around

the isocenter. The data gathered in the present study suggest

that the effectiveness of the correction by these methods falls

rapidly in more remote areas (see Fig. 5b in particular).
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Therefore, the limitations and some shortfalls associated with

these 2D correction methods cannot be overlooked.
Acknowledgment

We thank the staff at our workshop for their excellent

work in the construction of the 3D phantom.
References

[1] Bammer R, Markl M, Pelc NJ, Moseley ME. Assessment of spatial

gradient field distortion in diffusion-weighted imaging. Proc. of 10th

annual meeting of ISMRM, Honolulu; 2002. p. 1172.

[2] Bammer R, Markl M, Barnett A, et al. Analysis and generalized

correction of the effect of spatial gradient field distortions in diffusion-

weighted imaging. Magn Reson Med 2003;50:560–9.

[3] Markl M, Draney MT, Pelc NJ. Analysis and correction of the effect

of spatial gradient field distortion on velocity measurements with

phase contrast MRI. Proc. of 10th annual meeting of ISMRM,

Honolulu; 2002. p. 381.

[4] Markl M, Bammer R, Alley MT, et al. Generalized reconstruction of

phase contrast MRI: analysis and correction of the effect of gradient

field distortions. Magn Reson Med 2003;50:791–801.

[5] Wang DM, Rose S, de Zubicaray G, et al. Improving the speed of

assessment of magnetic resonance imaging measures of the progress

of Alzheimer’s disease, 12-month longitudinal studies feasible?

Neurobiol Aging 2002;23:1543.

[6] Wang DM, Chalk JB, Rose S, et al. Global and regional rates of brain

atrophy in Alzheimer’s disease using structural MRI. Clin Neuro-

spsychol Assess 2000;1:26–7 [Special Issue].

[7] Wang DM, Chalk JB, Rose S, et al. MR image-based measurement of

rates of change in volumes of brain structures Part II: application to a

study of Alzheimer’s disease and normal aging. Magn Reson Imaging

2002;20:41–8.

[8] Wang DM, Doddrell DM, Cowin G. A novel phantom and method for

comprehensive 3-dimensional measurement and correction of geomet-

ric distortion in magnetic resonance imaging. Magn Reson Imaging

2004;22:529–42.
[9] Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N,

et al. Quality assurance methods and phantoms for magnetic reso-

nance imaging: report of AAPM nuclear magnetic resonance task

group no. 1. Med Phys 1990;17:287–95.

[10] Kawanaka A, Takagi M. Estimation of static magnetic field and

gradient fields from NMR image. J Phys E: Sci Instrum 1986;19:

871–5.

[11] Mizowaki T, Nagata Y, Okajima K, et al. Reproducibility of geometric

distortion in magnetic resonance imaging based on phantom studies.

Radiother Oncol 2000;57:237–42.

[12] Walton L, Hampshire A, Forster DMC, Kemeny AA. A phantom

study to assess the accuracy of stereotactic localization, using T1-

weighted magnetic resonance imaging with the Leksell stereotactic

system. Neurosurgery 1996;38:170–8.

[13] Yu C, Apuzzo MLJ, Zee CS, Petrovich Z. A phantom study of the

geometric accuracy of computed tomographic and magnetic resonance

imaging stereostatic localization with the Leksell stereostatic system.

Neurosurgery 2001;48:1092–9.

[14] Orth RC, Sinha P, Madsen EL, et al. Development of a unique

phantom to assess the geometric accuracy of magnetic resonance

imaging for stereotactic localization. Neurosurgery 1999;45:1423–31.

[15] McRobbie DW. A three-dimensional volumetric test object for geo-

metric evaluation in magnetic resonance imaging. Med Phys 1997;24:

737–42.

[16] Mah D, Stechner M, Palacio E, et al. Characteristics and quality

assurance of a dedicated open 0.23 R MRI for radiation therapy

simulation. Med Phys 2002;29:2541–7.

[17] Wang DM, Doddrell DM. A proposed scheme for comprehensive

characterization of geometric distortion measured using a 3-dimen-

sional phantom in magnetic resonance imaging. Med Phys 2004;31:

2212–18.

[18] Sonka M, Hlavac V, Boyle R. Image processing, analysis and machine

vision. International Thomson Publishing Inc.;1996.

[19] Lerski RA, de Wilde J, Boyce D, Ridgeway J. Quality control in

magnetic resonance imaging. IPEM Report 80. York: The Institute of

Physics and Engineering in Medicine; 1998.

[20] Romeo F, Hoult DI. Magnet field profiling: analysis and correcting

coil design. Magn Reson Med 1984;1:44–65.

[21] Glover GH, Pelc NJ. Method for correcting image distortions due to

gradient nonuniformity. US Patent 4,591,789; 1986.


	Geometric distortion in clinical MRI systems
	Introduction
	Method
	The 3D phantom
	Assessment of geometric distortion
	Image processing
	MRI systems and MR acquisition protocols

	Results
	Siemens Sonata
	Siemens Quantum
	GE Signa EchoSpeed Plus BRM
	GE Signa TwinSpeed TRM (Zoom)
	GE Signa TwinSpeed TRM (Whole)

	Discussion
	Conclusions
	Acknowledgment
	References


