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Abstract

A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides
an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement
method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomoge-
neity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design
approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that
enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to
fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm X 310 mm X 310 mm), and it contained 10,830
control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less,
which were less than one tenth of the voxel’s dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the
differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion
for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and
research settings, especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. © 2004 Elsevier Inc. All

rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) has revolutionized
diagnostic imaging for the past two decades. This imaging
modality can explore the physical properties of tissue with
great details and is probably the most powerful imaging
technique in the current practice of radiology, especially for
imaging of the brain. In recent years there has been an
explosion of research activities in brain research using
structural and functional MRI. In fact, MRI has become the
most valuable radiological technique for both structural and
functional study of the brain. In general, MRI is now being
widely used in nearly every aspect of radiological exami-
nations and it is gradually replacing other imaging modal-
ities, becoming the favored modality of choice.
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Magnetic resonance imaging does have some limitations:
its constraints are related to the homogeneity of the field
generating devices used to form the image. Geometric dis-
tortion arising from magnetic field inhomogeneity and gra-
dient field non-linearity has been one of the major concerns.
The current generation of MRI scanners has been designed
with gradient rise times of less than 200 us. In order to
achieve such short rise times, gradient designers have re-
stricted the length of the gradient coils and also used fewer
turns. Such restrictions have led to an increase in the gra-
dient field non-linearity, the result being image distortions.
Although slight distortions in MR images normally have
little consequences in routine radiological examinations,
geometric distortion can be a serious problem in certain
MRI applications where high geometric accuracy is re-
quired. Examples where precision is a primary consider-
ation include image-guided surgery and volumetric quanti-
fication.

Geometric distortion arising from the static field inho-
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mogeneity and gradient field non-linearity has been studied
by specially designed phantoms [1-12]. Nearly all of these
phantoms, however, were designed for 2D (two-dimen-
sional) measurements. Two major design approaches have
been employed; one uses square grids [1-3] and the other
uses cylindrical rods [4—6] or capillary tubes [7]. A com-
mon feature in both design approaches is that the control
points are defined only through the intersection of the im-
aging plane with the grids or cylindrical rods. A clear
limitation in these approaches is that only the two coordi-
nates of the control points’ locations in the imaging plane
can be measured. The third coordinate that is perpendicular
to the imaging plane is immeasurable and is unknown.
Therefore, the measurement of geometric distortion with 2D
phantoms provides only an incomplete description of the
image distortion. Apart from this serious limitation, to map
geometric distortion in the entire imaging volume using 2D
phantoms is time-consuming. It often requires measure-
ments with the phantom positioned at different locations
and with different orientations. Additional errors can easily
be introduced in the process of repositioning.

For a complete mapping of geometric distortion in MRI,
control points defined in three dimensions (3D) are required.
To the authors’ knowledge, there has been only one study
that used control points defined in 3D [11,12]. To study
geometric distortion in MRI, Breeuwer et al. used spheres of
a certain size arranged in three dimensions [11]. Two
slightly different design approaches were developed. In
order to specify the positions of the control points, the
centre of the gravity of the spheres was used to generate the
control points’ positions. To ensure accuracy, such an ap-
proach requires the spheres employed to have a sufficient
size. In their design, spheres of 11 mm in diameter were
used [11]. This requirement puts a limit on the number of
spheres that can be arranged in a phantom. These authors
described the construction of two phantoms that contained
427 and 793 control points, respectively [11]. In their anal-
ysis, the accuracy associated with the positional measure-
ment of the control points appeared to be dependent on a
number of factors, including the size of the image voxels.

For a comprehensive and accurate mapping of geometric
distortion in 3D, two key requirements are fundamental.
First, the number of sampling points (control points) needs
to be sufficiently large in order to provide a comprehensive
mapping of the spatial variations of the distortion. Dense
sampling is necessary if detailed spatial information on
local deformations is to be obtained. Secondly, the accuracy
with which the positions of these sampling points are mea-
sured is vitally important, and this accuracy in fact ulti-
mately determines the spatial quantification of the geomet-
ric distortion. The two goals that are the key requirements of
the 3D phantom proposed in this article are to acquire a
sufficiently large number of control points and a method
that can accurately measure the positions of the control
points.

The article is organized as follows. In section 2, the

design of the 3D phantom is described. This is followed by
the development of a method that has been specifically
implemented to measure the positions of the control points
in the MR images of the phantom. Then, a procedure for
geometric distortion correction using the measured distor-
tion maps is outlined in section 4. Reproducibility and
accuracy assessments of the method are discussed in section
5 and the results are presented in section 6. The final two
sections (7 and 8) are included outlining the merits of the
method and the potential impact it may bring on MRI in
general and on MR neuro-imaging in particular.

2. The 3D phantom

Conceptually, there are only two simple ways that can be
used to define a point in space. Either the “point-like”
objects that can be “distinguished” in the image are used, or
a set of three orthogonal planes are employed and their
intercepting point can be used to define a point in space. The
approach of using “point-like” objects, i.e., spheres, has
been explored by Breeuwer et al. [11]. As acknowledged by
these investigators, this approach has limitations, particu-
larly on the number of control points that can be introduced.
It is important to develop an alternative method.

The central idea used in the design of the 3D phantom
proposed to address the issues outlined above is illustrated
in Fig. 1. As indicated by the arrows, each cross on the
surface of the grid sheet can be used to define a point in
space. These points can be viewed as the intercepting points
of the three orthogonal planes: the two planes that define the
crosses and the plane of the sheet surface. These well-
defined intersections at the surface of the grid sheets in 3D
are used as the control points in the approach described
herein.

A photograph of the 3D phantom that was constructed to
fit into a body coil based on this design is shown in Fig. 2.
The phantom has a very simple structure. It consists simply
of layers of grid sheets aligned in parallel with equal spac-
ing along the third dimension (the z axis) to create a 3D
array of points. The spacing between the sheets is the same
as the width of the sheet, so the control points along the z
axis are also equally spaced. The external dimensions of the
phantom are 310 mm X 310 mm X 310 mm, which forms
a cube. The wall materials used are 10.00 mm Perspex
sheets. The core materials of the phantom are the plastic
grid sheets. These grid sheets are normally used for building
ventilation and were purchased commercially. All the wall
plates and the plates of the grid sheets used for the con-
struction of the phantom were machined with precision to
ensure the regularity of the grid pattern of the phantom. The
grids are slightly non-square, 14.28 mm along one dimen-
sion (denoted as the x direction) and 14.39 mm along the
other dimension (denoted as the y axis). The width of the
grid sheets is 9.0 mm.

In the phantom shown in Fig. 2, the grid sheets contained
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Fig. 1. A schematic illustration of the control points (indicated by the arrows) generated using three orthogonal planes.

Fig. 2. A photograph of the 3D phantom. The coordinate axis system used in relating to the orientation of the phantom is shown in the bottom left corner.
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Fig. 3. A sequence of transverse slices selected in close proximity to an interface between a grid sheet surface and surrounding water (top row); and the
corresponding images based on the magnitude of the first derivative calculated along the z axis using a 3D Prewitt operator (bottom row).

19 grid crosses along the x and y axes, producing 19 X 19
= 381 points on each side of the sheet surfaces. The phan-
tom contained 15 grid sheets. Therefore, there are a total of
10,830 (19 X 19 X 30) points that can be used as control
points. These points form a regular 3D array. The dimen-
sions between the array points along the three orthogonal
axes are denoted, respectively, as C,, Cy and C,. For the
phantom shown in Fig. 2, C, = 14.28 mm, C,, = 14.39 mm
and C, = 9.00 mm. To complete the phantom, the water
solution that filled the phantom was prepared according to
the method recommended by AAPM (American Associa-
tion of Physicists in Medicine) [1].

3. The measurement of the positions of the control
points

A distinctive feature of the proposed method lies in the
manner in which the positions of the control points are
measured. The positions of the control points are deter-
mined by the positions of the planes (see Fig. 1). Specifi-
cally, the z coordinate is determined by the interfacial
boundary formed between the surface of the grid sheet and
the water; the x and y coordinates are each determined by a
pair of interfaces between the grid side walls and the water,
with the middle position of the two interfaces taken as the x
and y coordinates. Therefore, in the present method the
measurement of the positions of the control points becomes
the measurement of the positions of the interfacial bound-
aries. These interfacial boundaries are normally manifested
as image edges and the extraction of the interfacial bound-
aries becomes a problem of edge detection. There is exten-
sive literature on image edge detection, particularly for 2D
images. The method described herein employs the first
derivatives evaluated in three dimensions to detect these
edges and consequently to detect the interfacial boundaries.
The operators used for deriving approximate first deriva-
tives in three dimensions are the extended 3D Prewitt op-
erators that are described in Appendix A.

The method that has been specifically developed for the
measurement of the positions of the control points in the
MR images of the 3D phantom described in this article is
fully automated. This novel method involves two separate
steps. The first step is to identify a set of reference voxels
whose positions can be taken as an initial estimation for the
positions of the control points in the image. In conventional
approaches using point-like objects as source of control
points, clusters of voxels whose center of gravity is taken as
an approximation for the positions of the control points have
been used. In the present approach, wherein orthogonal
planes are employed to define the control points, a different
method has been developed. This method will be presented
in the following subsection and will provide an initial esti-
mate for the positions of the control points. The final posi-
tions of the control points in the present method are deter-
mined by the positions of the planes. The measurement of
the positions of the planes uses the first moments calculated
on the images formed by the magnitude of the first deriva-
tives. This is done in a subsequent step. The initial position
of the control points estimated in the first step is used to
assist an optimal placement of a region of interest in which
the positions of the planes are to be evaluated. The two steps
are described separately below.

3.1. Identification of the reference voxels for initial
estimation for the positions of the control points

As noted, the interfacial boundaries that are used to
define the control points in the present method are mani-
fested as image edges, and this is demonstrated in Fig. 3. In
Fig. 3, the top row shows a sequence of transverse slices of
the gray scale intensity images in proximity to an interfacial
boundary between a grid sheet surface and the water. Mov-
ing from left to right, the slice’s position moves from a
position in the gap (the water) near the interface to a posi-
tion that cuts through the grid sheet. As shown, the inter-
facial boundary occurred near the slice second from the left.
In the bottom row, the images based on the magnitude of the



D. Wang et al. / Magnetic Resonance Imaging 22 (2004) 529-542 533

1111
1 1)1

Fig. 4. A 2D mask used in a convolution for enhancement of the promi-
nence of the voxels at the crosses in the derivative images.

first derivative along the z axis, |g°(i, j, k)|, Eq. (A4), are
shown. It is clearly demonstrated here that the interfacial
boundary is manifested as image edges.

The next step is to further enhance the prominence of the
voxels at the crosses comparatively to those on the edges of
the grids, as only the voxels at the crosses are the potential
candidates for the reference voxels. This is achieved
through a convolution using a cross-like mask as shown in
Fig. 4. The convolution of this mask with |g°, j, k)| will
clearly add more intensity weight for voxels at the crosses
than those on the edges of the grids. The size of the mask
used in this convolution is not particularly crucial and the
one shown in Fig. 4 was one of a number of masks that were
investigated. The convolution was carried out in the xy
plane. A representative transverse slice of the convoluted
derivative image is shown in Fig. 5 (the top left corner; and
the three images included in the figure that were obtained
with different threshold levels were to make the prominence
of the crosses more perceptible). In Fig. 6, two representa-
tive 1D intensity profiles, one selected along the x axis (a)
and the other selected along the y axis (b), are presented. As
clearly shown here, the intensity of the voxels at the crosses
is significantly higher. The 19 peaks in each profile corre-
spond to the 19 crosses. In the method, these voxels are used
as the reference voxels that are to provide an initial estima-
tion for the positions of the control points.

3.2. The final measurement of the positions of the control
points by using the positions of the planes

The identified reference voxels provide an initial estima-
tion of the position of the control points in the phantom
images and are used to assist in the calculation of the positions
of the planes from which the positions of the control points are
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Fig. 5. A representative transverse slice of the convoluted derivative image
(top left corner) and three images obtained with different threshold levels
to aid visual recognition of the enhanced prominence of the voxels at the
Ccrosses.

finally determined. The positions of the three planes are
determined using the first moments of the magnitude of the
first derivatives evaluated along the three principal axes
[Egs. (A2)—(A4)]. In order to gain insight into the calcula-
tion of the positions of the planes, it is useful to examine
some ID profiles of image gray scale intensity and the
magnitude of the first derivatives in the neighborhood of a
control point.

In Fig. 7a, representative 1D profiles of the image inten-
sity for a group of voxels sequentially selected along a line
parallel to the z axis near two control points are shown, and
in Fig. 7b, the profiles of the magnitude of the first deriva-
tive for the selected voxels calculated along the z direction
are given. As shown, the z positions of the planes (the
interfacial boundary between the surface of the grid sheet
and the water) are well defined, especially in the derivative
profiles in Fig. 7b. In the method, the z position of the planes
is defined as the central position of the peak in the derivative
profile. These central positions can be measured using the
first moment K(i, j)

D kg7, j, k)|
Klij) ="———— (1)
> g ), k)|
p=1

where n_ is the number of voxels used in the evaluation of
the first moment. Typical values for n_ are 5, 7 or 9. The
position [i, j, K(i, j)] is then taken as the position of the plane
at the sampled location. In the method, the plane is sampled
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Fig. 6. (a) and (b) illustrate two representative 1D intensity profiles, one
selected along the x axis (a) and one selected along the y axis (b) of the
convoluted derivative images. The two lines were selected passing at the
central cross (see Fig. 5).

in a small neighborhood. For the plane perpendicular to the
z axis, a neighborhood of 3 X 3 or 5 X 5 is used. These
sampled plane positions can be fitted into a plane equation
in 3D using an algorithm such as the non-linear Levenberg-
Marquardt method. The plane obtained by such a non-linear
fitting method, together with the other two planes to be
derived in a similar manner from the first derivatives cal-
culated along the x and y axes, will yield an intercepting
point and this point could be taken as a control point.
However, in a fully automated algorithm such as the one
presented herein, the use of a fitting process may pose
problems in implementing an effective procedure for con-
vergence checks. Therefore, in the method an approxima-
tion was used. In this approximation, the mean value of the
sampled K(i, j) in the specified neighborhood is taken as the
z coordinate of the control point. In a similar fashion, the x
and y coordinates are assigned by the mean positions of the
other two planes to be described in the next paragraph. In
fact, the voxels used in the determination of the position of
the plane form a volume and this volume is referred to as
plane sampling volume (PSV). For the determination of the
z position of the control points, this volume is denoted as
PSV(z). For a neighborhood of 5 X 5 with 7 voxels used in
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Fig. 7. (a) and (b) illustrate representative 1D profiles of the image intensity
for a sequence of voxels taken along a line parallel to the z axis (a); and the
magnitude of the first derivative calculated along the z axis for the same
voxels (b). The two edges in (a) correspond to the two interfacial bound-
aries between the grid sheet surfaces and the water. The dashed lines in (b)
indicate the positions of the interfacial boundaries and were obtained using
the first moments.

the evaluation of the first moment, PSV(z) is 5 X 5 X 7. The
placement of the PSV(z) is centred at the reference voxels.

The measurements of the positions of the control points
along the x and y axes are carried out in a very similar
manner to that for the z coordinate. In Fig. 8a, representative
1D profiles of the image intensity for voxels sequentially
selected along a line parallel to the x axis near two control
points are shown, while in Fig 8b the magnitude of the first
derivative calculated along the x axis for the same voxels is
given. As shown in Fig. 1, for the x (and y) coordinate, two
interfacial boundaries on the both sides of the grid wall are
employed. As the separation between the two boundaries is
the width of the grid wall, which is only ~1.5 mm, the two
interfacial boundaries are very close, as indicated as slopes
in the intensity profile (a) and peaks in the derivative profile
(b). The middle position between the two interfacial bound-
aries will be taken as the x position of the plane perpendic-
ular to the x axis. These middle positions can be approxi-
mated by the first moment /(j, k)
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Fig. 8. (a) Representative 1D profiles of the image intensity for a sequence
of voxels taken along a line parallel to the x axis; (b) The magnitude of the
first derivative calculated along the x axis for the same voxels. The two
close interfacial boundaries between grid sidewalls and the water are well
resolved in the derivative profile (b). The dashed lines in (b) indicate the
middle positions of the interfacial boundaries and were obtained using the
first moments.

where 7, is the number of voxels used in the evaluation of
the first moment and |g(i, j, k)| is the magnitude of the first
derivative along the x axis [see Eq. (A2)]. Typical values for
n, are 7, 9 or 11. The dashed lines in Fig. 8b indicate the
middle positions of the interfacial boundaries determined by
the first moment, I(j, k). Like for the z coordinate calcula-
tion, the x position is sampled in a small neighborhood with
a typical size of 7 X 3 or 9 X 4. The mean value of I(j, k)
sampled in the specified neighborhood is then taken as the
x coordinate of the control point. The voxels used in the
determination of the x coordinate (for y as well, because the
phantom is symmetrical with respect to the x and y axes)
form a volume and is referred to as PSV(xy). The placement
of PSV(xy) is similar to that for PSV(z), but needs to be
within the frame of the grid. For the determination of the y
coordinate, the procedure is exactly the same by using the
first derivative calculated along the y axis. The first moment
J(i, k)

2 Jplg s jik)]
Iy =" 3)
187 k)|

p=1

is used for the determination of the y coordinate. n, is the
number of voxels used in the evaluation of the first moment
and |g” (i, j, k)| is the magnitude of the first derivative along
the y axis [see Eq. (A3)].

In the present work, a laboratory-based coordinate sys-
tem is used for the positions of the control points measured
in Euclidean coordinates. This coordinate axis system has
its origin at the isocentre of the scanner, which is also taken
to be the isocentre of the gradient field generating devices.
Its x axis is taken to be along the left/right direction, the y
axis along the anterior/superior direction, and the z axis
along the head/foot direction. The geometric distortion can
then be characterized by the differences in the coordinates
of the control points

dx, = xl’, - X,
dy,= y{’, ~Yp
dz,=2,— 2, 4

dr, = (dx,)* + (dy,)* + (dz,)?
(p=1,2....N)

Here, x,, y,, and z,, are the coordinates of the control point p
measured in the distorted image space; x,, y, and z, are the
corresponding coordinates measured in the undistorted
physical space of the phantom, and N is the total number of
control points. It is due to this one-to-one correspondence

that a detailed mapping of geometric distortion is obtained.

4. Correction of image geometric distortion

Following mapping of the geometric distortion arising
from an accurate knowledge of the positions of the control
points, the correction of the distortion simply becomes a
problem of interpolation. This interpolation can be symbol-
ically expressed as

[

by X
y | =2y %)
4 z

where x, y and z are the coordinates of any given spatial
point in the undistorted physical space; x', y' and z' are the
coordinates of its corresponding point in the distorted image
space, and P represents an interpolation model through
which this correspondence is established. The transforma-
tion expressed by Eq. (5) is also referred to as spatial
transformation.

There are two general approaches to spatial transforma-
tions: global transformation and piecewise interpolation.
Global transformations, such as the polynomial transforma-
tions used in some previous studies [2,11], impose a single
mapping function upon the entire imaging volume of inter-
est. In that approach, the use of a single function sometimes
cannot adequately account for local geometric distortions.
In order to manage local distortions, piecewise mapping has



536 D. Wang et al. / Magnetic Resonance Imaging 22 (2004) 529-542

been introduced [14,15]. Because the primary aim of the
present work is to provide a comprehensive and accurate
mapping of the geometric distortion, piecewise interpola-
tions have been adopted.

For piecewise interpolation, a range of models are avail-
able. These models, however, were developed mainly to
deal with two-dimensional problems. Although some mod-
els can be easily extended to 3D, one problem associated
with this extension, particularly for the present work with a
significantly large number of data points, is the exponential
increase in computational time. A detailed study of the
various interpolation models will be presented in a separate
publication. It was found, however, that trilinear interpola-
tion, the simplest interpolation of all, performed as satisfac-
torily as more sophisticated interpolation models. In order
to complete the correction process, a second interpolation is
required for interpolating the image intensity. Again, the
trilinear interpolation was used.

5. Assessment of the method

The method has been tested on three separately acquired
image data sets. The images were acquired with a Siemens
Sonata 1.5T MRI scanner located at a local hospital. The
phantom was positioned at the magnet isocentre and imag-
ing was performed using a body coil. An inversion recovery
gradient echo 3D imaging sequence was used with follow-
ing imaging parameters: TR (repetition time) = 1540 ms;
TE (echo time) = 1.53 ms; TI (inversion time) = 1100 ms;
imaging array size = 256 X 256 X 256; FOV (field-of-
view) = 334.0 mm X 334.0 mm X 307.2 mm. The corre-
sponding voxel’s dimensions were 1.305 mm X 1.305 mm
X 1.200 mm. Because of the relatively low sensitivity of the
body coil, multiple acquisitions were used. Three image
data sets were acquired in a single session with the phan-
tom’s position unaltered. The first two data sets (data sets 1
and 2) were acquired with four acquisitions each and were
acquired one after the other. The third data set (data set 3)
was then acquired with eight acquisitions. In the acquired
images, as some slices at the phantom edges contained
serious image artifacts, only the control points defined by
the central part of the array, 19 X 19 X 25 with a total of
9025 control points, were used in the assessment studies of
the method. Precision positioning of the phantom in the
scanner was enabled using scanner’s laser positioning facil-
ity.

The reproducibility of the method was tested by com-
paring the measured positions of the control points between
the three repeatedly acquired data sets. The test also in-
cluded a study of the differences in the measured positions
by using different PSV sizes. For the estimation of the
accuracy, it needs to be acknowledged that the measurement
of the accuracy can be extremely difficult if it is not impos-
sible. Manual identification relying on human vision is
sometimes regarded as an “accurate” method, but such a

claim has always been questioned due to the subjective
variability involved. Manual identification is also impracti-
cal for the present work, as the number of the control points
in the phantom is large. Moreover, the accuracy in manual
identification is limited as it does not provide accuracy at a
sub-pixel (or sub-voxel) level. Because of these limitations
the following method was used to provide an alternative for
accuracy assessment. Accuracy was assessed by estimating
the measured residual geometric distortions in the corrected
images. If the positions of the control points have been
measured accurately, the corrected images can then be ex-
pected to contain little or no geometric distortion. Any
residual distortion measured in the corrected images can
then be used as an overall measure of the accuracy. This
method has also been used by previous investigators [11].

6. Results

In the top row of Fig. 9, representative transverse slices
of uncorrected phantom images are shown. Geometric dis-
tortions are clearly visible in these images. The distortion
increases as the distance from the magnet isocentre in-
creases. For example, in the slice shown in the top right
corner of Fig 9, which is at z = 110 mm, the grids shown in
the central region and those in the corner areas were actually
from two neighboring grid sheets. In the bottom row, rep-
resentative slices of the corrected images are shown. By
visual inspection, the corrected images showed no notice-
able geometric distortion. More quantitative analysis relat-
ing to the geometric distortion is presented in Fig. 10. Here,
samples of geometric distortion selected in certain planes by
calculating the errors in the coordinates between the image
positions and the true positions [Eq. (4)] are shown. Large
errors are present in the uncorrected images. Maximum
errors were over 9.00 mm. For comparison, samples of the
errors measured in the corrected images are given in Fig. 11.
It is clearly demonstrated here that in the corrected images
the errors were negligible. The maximum errors were ~0.6
mm.

Representative quantitative results on reproducibility and
accuracy are presented in Tables 1-3. In Table 1, statistical
data for the absolute differences in the measured coordi-
nates of the control points compared between three repeated
data sets are tabulated. The means errors in the absolute
differences in the coordinates (x, y, and z) and in the posi-
tional displacement (r) were only ~0.1 mm or less, indi-
cating an excellent reproducibility. The standard deviations
were also very small. Also included is the maximum abso-
lute difference. There is no single control point whose
absolute difference in the coordinates (x, y and z) or in its
positional displacement (r) exceeded 0.7 mm. In Table 2,
representative statistical data on the differences in the co-
ordinates obtained using two different sets of PSVs are
presented, showing an extremely high level of reproducibil-
ity. Both the means and standard deviations were in the
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(z=0mm)

(z=75mm)

(z= 110 mm)

Fig. 9. Representative transverse slices of the phantom image selected at different locations before correction (top row); and three slices selected at similar

locations after correction (bottom row).

order of 0.1 mm. All maximum absolute differences were
less than 0.5 mm.

The representative results for the accuracy assessment
are summarized in Table 3. Here, the differences in the
coordinates of the control points between those measured
from the phantom images (uncorrected and corrected) and
that measured from the known dimensions of the phantom
are tabulated. Before the correction, the mean absolute dif-
ferences in the coordinates were about 1.4 mm and in the
positional displacement 2.8 mm. The maximum differences
were found to vary between 6.9 mm and 9.5 mm for the
coordinates and exceeded 10.0 mm for the positional dis-
placement. After correction, the mean absolute differences
in the coordinates were ~0.1 mm or less. The mean abso-
lute differences in the positional displacement were slightly
larger, between 0.17 mm and 0.21 mm. The standard devi-
ations were 0.10 or less. The maximum absolute differences
were ~0.6 mm.

7. Discussion

As pointed out in the Introduction, for a comprehensive
and accurate three-dimensional mapping of the geometric
distortion, the two key requirements are a dense distribution
of the control points and a robust and accurate method for
the positional measurement of these control points. These
two key requirements have clearly been met in the present
method and the success is reflected by the accuracy of the
method. The central concept used in the present method is
to use a phantom that provides three orthogonal planes to
define a point in space. Phantoms using this design approach
easily allow as many control points as desired, and the
number of control points is limited only by necessity. The

3D phantom described in this article contained an array of
10,830 control points (although only 9025 were used in the
assessment study) in a field of view 257.0 mm X 259.0 mm
X 261.0 mm. By simply changing the grid dimensions and
the width of the grid sheets, phantoms with any desired
density of the array points (the control points) can be easily
constructed. To improve the procedure grid sheets with grid
dimensions of 10.0 mm X 10.0 mm and 10.0 mm in sheet
thickness are being resourced. With such grids, a phantom
with the array dimensions of 260.0 mm X 260.0 mm X
260.0 mm will have a total of 19,683 control points.

An important aspect of the success of the method is
clearly the high accuracy in the positional measurements of
the control points (see Table 3). The mean errors in the
measured coordinates of the control points with the present
method were in the order of 0.1 mm. The maximum errors
were ~0.6 mm. These errors are small, considering the
extent of the distortions in the original phantom images (see
Figs. 9 and 10 and Table 3). Even greater accuracy can be
achieved for mapping geometric distortion with a head coil.
(With head coils, phantom images with smaller voxel sizes
and better signal-to-noise ratios can be generated. With
smaller voxels, the edges that define the interfacial bound-
aries become sharper and the positions of the planes can be
more accurately measured).

The reproducibility data have shown that the method is
extremely robust. The measured coordinates of the control
points either in repeated image data sets or with differently
selected PSV sizes all showed a high level of reproducibility
(see Tables 1 and 2). The mean errors were very small,
between 0.02 and 0.12 mm. The standard deviations were
also negligibly small. The maximum errors were ~0.6 mm.
It should be noted that this high level of robustness was
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Fig. 10. (a) to (f) Samples of the measured geometric distortion in certain planes at different locations.

achieved on the phantom images with relatively low quality.
For the three data sets used, the mean signal-to-noise ratio
(SNR) was only 13.6 in data set 1, 13.7 in data set 2, and
19.4 in data set 3 (this data set was acquired with twice the
number of acquisitions). In addition, SNR showed large
spatial variations in the imaging volume and in some re-
gions, SNR dropped to ~5.0. Also, it was noticed that the
intensity of the phantom images was highly inhomoge-
neous. Although a number of factors might have contributed
to the robustness of the method, the most important factor is
believed to be the use of the 3D Prewitt operators. These
operators inherently have an effective smoothing capability
that allowed an accurate estimation of the control points. It
also should be noted that the method is entirely automated.
There are no steps in which subjective decisions are re-
quired.

The method described herein has a number of quantifi-
able advantages to that described in [11]. First, the number
of control points in the present method can be made as large
as desired, whereas in the sphere-based approach, the num-
ber of control points is limited. The phantom described in
the present work had 10,830 control points compared to 792
in a phantom of similar size that used spheres [11]. Sec-
ondly, the present method is more accurate. If the maximum
absolute difference in the positional displacement is used as
a measure, the present method reduced it from over 10.00
mm before the correction to ~0.6 mm after the correction,
a reduction by a factor of more than 15. By comparison,
using the method described in [11], the reduction was about
fourfold from 4.3 mm before the correction to ~1.0 mm
after the correction. A similar performance difference was
also observed in the reduction in the mean errors of the
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Fig. 11. (a) to (f) Samples of the measured residual geometric distortion in the corrected images in certain planes at different locations.

positions of the control points between the two methods.
Thirdly, the present design of the phantom is extremely

simple and flexible. In addition

Table 1

[op

, max) of the absolute errors in the
measured coordinates of the control points compared between the three

Summary of the statistical data (u,
different data sets described in the text

, the collection of the phan-

tom MR images needed to map the geometric distortion is

also simple.

Data set

1I

Data set

max
(mm)

I
(mm)

Direction

Any local deformation should not significantly affect the

accuracy in the measurement of the positions of the control
points, as the positions of the planes for each control point

are determined only in a small neighborhood,

0.06
0.04
0.05

0.06

0.40
0.48

0.05
0.06
0.11
0.05
0.04
0.05
0.10

typically 5 to

0.70
0.52
0.40
0.40
0.61

0.06
0.05
0.04
0.04
0.06

7 voxels along each direction. On such relatively small

1

scales, any deformations of the planes should be negligibly

the effect due to the deformations

t]

small and, therefore
should also be small.

0.53
0.37
0.54
0.60

0.05
0.04
0.04
0.06

0.05
0.04
0.05
0.10

impact

.

8. Conclusion and the potential

The PSV sizes used were: PSV(xy) = 7 X 7 X 3 and PSV(z) = 3 X 3

X 5.

The 3D phantom and the method that has been developed
specifically for the positional measurement of the control
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Table 2

Summary of the statistical data (u, o, max) of absolute errors in the
measured coordinates of the control points obtained with different sizes
of PSVs

Data  PSV size PSV size w max
set (Set I) (Set 1) Direction (mm) o (mm)
1 TXTX3 9X9X4 X 0.05 0.04 0.27
PSV (xy) PSV (xy) y 0.02 0.02 0.13
3X3X5 5X5X7 z 0.09 0.07 0.46

PSV (2) PSV (z) r 0.12 0.07 0.46

2 0.05 0.04 0.27
0.02  0.02 0.16
0.09 0.07 0.45
0.12  0.07 0.45
3 0.05 0.04 0.27
0.02  0.01 0.10
0.10  0.08 0.44
0.12  0.07 0.44

points in the phantom described in this article have been
demonstrated to be capable of providing a comprehensive, 3D
mapping of geometric distortion inherent in MRI images. A
novel approach using three orthogonal planes to define control
points in 3D space was employed in this method. This novel
design of the phantom easily allows as many control points as
desired. In summary, the mean errors in the measured coordi-
nates of the control points were typically ~0.1 mm, which
were less than one tenth of the voxel dimensions of the phan-

Table 3

Summary of the statistical data (u, o, max) of the differences (absolute)
between the measured coordinates of the control points in the phantom
images (uncorrected or corrected) and the corresponding coordinates
measured directly from the physical dimensions of the phantom

Data W max
set Status Direction (mm) o (mm)
1 uncorrected X 1.46 1.47 8.12
y 1.44 1.39 6.90
z 1.36 1.35 9.50
r 2.83 2.00 10.67
1 Corrected 0.08 0.07 0.53
0.09 0.07 0.52
0.07 0.07 0.58
0.17 0.08 0.60
2 Uncorrected 1.46 1.47 8.09
1.44 1.39 7.02
1.36 1.35 9.31
2.83 1.99 10.54
2 Corrected 0.09 0.08 0.60
0.10 0.08 0.60
0.10 0.08 0.56
0.20 0.09 0.64
3 Uncorrected 1.46 1.47 8.14
1.44 1.39 7.03
1.36 1.35 9.33
2.83 1.99 10.56
3 Corrected 0.08 0.07 0.58
0.11 0.09 0.58
0.11 0.10 0.50
0.21 0.10 0.68

tom images. Moreover, the maximum absolute errors were
only ~0.6 mm, reduced from over 10.0 mm in the original
uncorrected images (see Table 3).

The simplicity, accuracy and effectiveness in mapping
the geometric distortion demonstrated in the present method
may indicate that the method can have some impact on
those areas of MRI requiring accurate and reproducible
imaging. For example, the 3D phantom can be used to
provide a comprehensive quality assurance program for
geometric distortion that can never be achieved with any
phantoms designed for 2D measurements. There is no doubt
that the accurately mapped geometric distortion obtained
with the method can be used to improve the accuracy and
sensitivity both in structural and functional MRI. The
method may have potential to make MRI a stand-alone
imaging modality in applications where geometric accuracy
is highly demanded, such as in radiosurgery and radiother-
apy. Importantly, the method can also provide an effective
way for image quality control in large-scale longitudinal
studies using MRI.
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Appendix: The 3D Prewitt operators

Prewitt operators were initially introduced in 2D to pro-
vide an approximation for the first derivatives [13]. These
operators can be viewed as a discrete evaluation of the first
derivatives. The 2D Prewitt operators are defined by a set of
3 X 3 masks. For example, the mask that is used for an
approximate first derivative along the +x axis (the horizon-
tal axis of the image) is

-1 0 1
-1 0 1
-1 0 1

The convolution of this mask with a two-dimensional image
will provide an approximation for the first derivative along
the +x axis for every pixel in the image, except for those
pixels on the image boundaries for which the Prewitt oper-
ators are not applicable. The explicit calculation involved in
the convolution process is

g H)=fi+1j-1)—-fli—-1,,-1)
+fA+ 1) = fG—1,]))
+fi+1,j+1)—fi—1,j+1)
(A1)
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Fig. Al. The mask used in the 3D Prewitt operator that provides an approximation for the first derivative along the x axis (i direction) as indicated.

where g*(i, j) denotes the approximate first derivative along
the +x axis for the pixel at (7, j) and fis the image function
(gray scale intensity). A scaling factor of 1/3 is often used
to normalize the first derivatives.

The 2D Prewitt operators can be extended to provide an
approximation for the first derivatives in 3D. The 3D equiv-
alents of the 2D Prewitt operators are defined by a set of 3
X 3 X 3 masks. Each of these masks contains 26 neigh-
boring voxels in 3D. For convenience, these operators are
referred to as 3D Prewitt operators. In the present work only
the 3D Prewitt operators that provide approximate values of
the first derivative along the three principal axes, x, y and z
axes (or, i, j, and k directions) are introduced.

The 3D Prewitt operator that provides an approximate
value for the first derivative along the +x axis uses the mask
as shown in Fig. Al. The explicit calculation involved in the
convolution process is

g k) =fi+1j—Lk=1)—fi-1,j
—Lk=D+fG+1,j—1,k)—f(

-1, j—-Lk+fi+1,j—1,k+1)
—fi—-1,j—1L,k+1)+fG+1,j,k

- —fli—1,j,k—1)+f(

+ 1,7,k) —fi — 1,j,k) + f(i + 1,j,k

+ 1) —fli—1,j,k+1)+fGi+1,)
+1L,k—D—f(i—1,j+1,k—1)
+fi+1,j+1,k)—fi—1,j+1,k)
+fi+1,j+1L,k+1)—f(i—1,j

+ 1,k + 1)(A2) (A2)

where g'(i, j, k) is the approximate value for the first derivative
for the voxel at (i, j, k), and f'is the image function in 3D. The
first derivative is approximated by averaging the differences of

the gray scale intensities between nine pairs of the neighboring
voxels. By simply rotating the axes, masks can be easily
defined for the two operators that provide approximate values
for the first derivatives along the y and z axes. The calculations
involved in the corresponding convolution processes are

g k) =fli—1,j+1,k—1)
—fli—1,j—1L,k—=1)+f(i—1,j+ 1,k
—fli—1,j— Lk +fGi—1,j+1,k+1)
—fli—1,j—Lk+ 1) +fGj+ 1,k—1)
—f(,j— 1L,k=1)+f(,j+ 1,k) = f(i,j — 1,k)
+f,j+ 1L,k+1)—f(Gi,j— 1,k+1)
+f i+ 1, j+Lk—1)—fGi+1,j—1,k—1)
+fE+ 1,5+ 1,k)—fG+1,7—1,k
+fi+1,j+1,k+1)
—fi+1,j—1,k+1) (A3)
and
g, j, k) =f(i—1,j— L,k+1)
—fli—1,j—1Lk—=1)+f(i—1,j,k+1)
—fi—-1,,k—1)+fG—-1,7+1L,k+1)
—fi—1,jfi—1,j+1,k—1)
+f,j—1L,k+1)—f(G,j—1,k—1)
+ £l k + 1) = f(i.j,k — 1) + f(i,j + 1L,k + 1)
—flUj+Lk=—1)+fG+1,j—1,k+1)
—fl+1,j—1Lk=1)+fG+1,jk+1)
—fl+1,,k—=1)+fGi+1,j+ 1L,k+1)

—fi+1,;+1,k—-1) (A4)
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where g’ (i, J, k) and g° (i, j, k) are the approximate values
for the first derivatives along the y and z axes.
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