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In dynamic contrast-enhanced MRI (DCE-MRI) studies, an ac-
curate knowledge of the arterial contrast agent concentration
as a function of time is crucial for the estimation of kinetic
parameters. In this work, a novel method for estimating the
arterial input function (AIF) based on the contrast agent con-
centration-vs.-time curves in two different reference tissues is
described. It is assumed that the AIFs of the two tissues have
the same shape, and that simple models with two or more
compartments, and unknown kinetic parameters, can describe
their tracer concentration-vs.-time curves. Based on the prin-
ciple of self-consistency, one can relate the two tracer concen-
tration-vs.-time curves to estimate their common underlining
AIF, together with the kinetic parameters of the two tissues. In
practice, the measured concentration-vs.-time curves have
noise, and the AIFs of the two tissues are not exactly the same
due to different dispersion effects. These factors will produce
errors in the AIF estimate. Simulation studies show that despite
the two error sources, the double-reference-tissue method pro-
vides reliable estimates of the AIF. Magn Reson Med 52:
1110–1117, 2004. © 2004 Wiley-Liss, Inc.
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In clinical and experimental dynamic contrast-enhanced
MRI (DCE-MRI) studies, a low-molecular-weight, extracel-
lular contrast agent (such as Gd-DTPA) is commonly in-
jected, and its concentration-vs.-time curve in vivo is mea-
sured with the use of T1-weighted images. A number of
kinetic models have been proposed to characterize the
concentration-vs.-time curves and infer the tissue’s phys-
iologic properties. The quantities that can be estimated
from the kinetic models are often referred to as kinetic
parameters, and some of them reflect local physiology. The
most widely used kinetic model is the two-compartment
model (1–3), which attributes the concentration change of
the contrast agent to its transfer between two compart-
ments: the blood plasma and the tissue extravascular ex-
tracellular space (EES). Given the tracer concentration in
the arterial blood plasma as a function of time, which is
often referred to as the contrast agent arterial input func-
tion (AIF), through curve fitting we can obtain the transfer
constant of the contrast agent (Ktrans) and the fractional

EES volume (�e), which respectively reflect the vascular
permeability and the leakage space of the tissue. These two
kinetic parameters (especially Ktrans) are now frequently
used as surrogate hemodynamic markers to assess drugs
that target tumor vasculature (4).

In order to extract meaningful kinetic parameters, most
kinetic models, including the two-compartment model,
require a precise measurement of contrast agent concen-
tration, and an accurate estimation of the AIF. To date, the
AIF has been extremely difficult to estimate or measure in
clinical DCE-MRI studies with low-molecular-weight con-
trast agents. The AIF thus becomes a major source of error
in estimates of Ktrans and other kinetic parameters.

Four methods have been used to estimate the AIF. The
most common approach is to use a fixed biexponential
AIF, as proposed by Tofts and Kermode (2). This is a
robust approach; however, the biexponential function can-
not describe the first pass of the contrast media bolus. The
use of this biexponential AIF obtained from low-time-
resolution experimental data can cause significant error in
the estimate of Ktrans when images are collected with a
high time resolution (5). In addition, the variation between
individuals in measured AIFs can be as large as 4.5-fold,
which would make a mean parameter AIF model highly
unreliable (6). The second method is to measure the AIF in
a major artery using standard DCE-MRI techniques. Recent
studies have shown that under some conditions, the AIF
determined in this manner is in good agreement with the
AIF determined from direct blood sampling (7). However,
direct measurement of the arterial blood concentration of
contrast agent by MRI is subject to errors due to T*2 effects,
partial volume effects, low signal-to-noise ratio (SNR)
when smaller arteries must be sampled, and errors due to
the rapid flow of blood in the artery. In addition, the AIF
measured from a major artery can be substantially different
from the local AIF in the tissue of interest due to delay and
dispersion effects. Simulations suggest that errors as large
as 70% of the actual value can be introduced by using the
AIF in a major artery to determine kinetic parameters for a
specific tissue (8). Finally, for many MRI scans, a major
artery may not be in the field of view (FOV).

The third method for estimating the AIF assumes that it
can be described by a family of functions with adjustable
parameters, but that the kinetic parameters of the tissue are
unknown. A best fit of the tissue tracer concentration-vs.-
time curve is then claimed to give the best estimates of
both the AIF and the kinetic parameters associated with
the tissue. For ease of reference, we will refer to this latter
method as the curve-fitting method. In the first published
application of this method (9), a monoexponential func-
tion was used to characterize the shape of the AIF. This
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assumption potentially introduces significant errors due to
the oversimplification of the AIF shape. On the other hand,
more complicated AIF models, such as the sum of three
Gamma-variate functions (10), are difficult to apply. When
the data are noisy and the function used to model the AIF
has too many parameters, it becomes difficult to dissociate
the AIF parameters from the local kinetic parameters dur-
ing curve fitting. Thus the results obtained for the AIF and
the physiologic parameters have significant errors.

The fourth method is called the reference-tissue ap-
proach. It uses a normal reference tissue, which in previ-
ous work (11) was assumed to be a two-compartment tis-
sue, to determine the AIF. This approach assumes that
values of kinetic parameters of normal tissue do not vary
greatly. Literature values for Ktrans and �e are used in the
two-compartment model for the reference tissue. The con-
trast agent concentration-vs.-time curve in the reference
tissue is measured experimentally. In this case, the only
unknown variable is the blood plasma concentration of
contrast agent as a function of time, i.e., the AIF. The AIF
is inversely derived from the measured concentration-vs.-
time curve in the reference tissue. This works well in
practice because the two-compartment model provides a
good fit to data obtained from normal reference tissues,
particularly those with high blood flow. This approach is
able to successfully characterize the shape of the AIF,
including the first-pass portion (11), and may better reflect
the local AIF for the region of interest (ROI) than the AIF
measured from a remote major artery. It provides high SNR
when a large volume of tissue with rapid blood flow can be
used as a reference, and it avoids errors due to partial
volume effects that can occur when the AIF is measured
directly in arteries. However, the values of the kinetic
parameters can vary considerably between different sub-
jects, or even between different scans of the same subject.
This may be especially true for parameters that depend on
blood flow and capillary permeability, such as Ktrans (3).
Thus, the use of fixed values from the literature is likely to
cause significant errors in the estimate of AIF.

Finally, the traditional reference-tissue approach is not
self-consistent. For purposes of illustration, suppose there
are two reference tissues (e.g., spleen and muscle) within
one scan, and that their true AIFs are the same. With each
reference tissue we can obtain an estimate of the AIF using
the literature values for its kinetic parameters. Because the
literature values of the kinetic parameters generally differ
from the true values in each particular scan, the two AIFs
estimated independently from the two reference tissues
may be both different from the true AIF and different from
each other, which clearly contradicts our hypothesis that
the AIFs of the two tissues are the same.

The lack of self-consistency in the traditional reference-
tissue approach is primarily due to the discrepancy be-
tween the literature values and the true values of the
kinetic parameters. Here we illustrate that by amending
the inconsistency between the two estimated AIFs, one
can find both the true values of the kinetic parameters and
the correct estimate of the AIF using two reference tissues
(see the Double-Reference-Tissue Method section). We
also use simulations to show that the double-reference-
tissue method has the potential to be highly accurate de-

spite the use of minimal assumptions and noisy data (see
Simulations section).

MATERIALS AND METHODS

Double-Reference-Tissue Method

General Theory

Following the standard notation proposed in Ref. 3, we use
Cp(t) and Ct(t) to denote the AIF and the tracer concentra-
tion in tissue, respectively, as a function of time. A kinetic
model relates Ct(t) and Cp(t) through the kinetic parame-
ters, which we can symbolize as

Ct�t� � f�Cp�t�,��, [1]

where f is a model-dependent function, and � represents
all of the kinetic parameters. Given the kinetic parameters,
we can inversely determine the AIF from Ct(t):

Cp�t� � g�Ct�t�,��, [2]

where g � f�1 is the inverse function of f. Equation [2] is
the “reference-tissue approach” for obtaining the AIF.

When there are two reference tissues available in the
MRI FOV, we propose the use of the double-reference-
tissue method to determine the AIF using the two tracer
concentration-vs.-time curves. The method is based on the
following two assumptions:

1. The AIFs of the two reference tissues have the same
shape, but there can be differences in the arrival time of
the contrast media bolus.

2. For each reference tissue, we know a priori what kind
of kinetic model can adequately explain the concentration-
vs.-time curve.

We use superscript A and B to denote the two reference
tissues, and l denotes the difference in bolus arrival times
between tissue A and tissue B. A positive value means that
the bolus arrives in tissue B later than in tissue A. The
assumption that the AIFs of the two reference tissues share
the same shape enables us to establish a relation between
them:

gA�Ct
A�t � l�,�A� � Cp

A�t � l� � Cp
B�t� � gB�Ct

B�t�,�B�.

[3]

Since we know the appropriate kinetic model for each
reference tissue (i.e., the exact form of gA and gB), we can
use Eq. [3] to estimate the kinetic parameters �A and �B,
and hence the AIF of the two tissues. An equivalent equa-
tion to Eq. [3] is

Ct
B�t� � f B�Cp

B�t�,�B� � f B�gA�Ct
A�t � l�,�A�,�B�, [4]

which shows that we can estimate the kinetic parameters
by fitting the Ct(t) of one reference tissue using information
from the other reference tissue. The logic behind this fit-
ting procedure can be explained as follows: If the param-
eters assumed for reference tissue A are not correct, the
AIF obtained deviates from the true underlying AIF so that
we cannot get a good fit of the concentration-vs.-time curve
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in tissue B. Under the assumptions that the AIF in the two
tissues has the same shape, and the kinetic models of the
two tissues are known, a correct estimate of the AIF, and
thus a best fit of the concentration-vs.-time curve in tissue
B, can only be obtained when the parameters assumed for
reference tissue A are accurate.

The double-reference-tissue method can be considered
as an extension of both the curve-fitting method and the
reference-tissue approach. Equation [4] demonstrates that
it is closely related to the curve-fitting method, since both
methods use curve-fitting to derive the kinetic parameters
and the AIF. However, the double-reference-tissue method
does not have the difficulty faced by the traditional curve-
fitting method in choosing a family of functions to describe
the AIF. As shown by Eq. [4], the double-reference-tissue
method chooses these functions as gA�Ct

A�t � l �,�A� in-
spired by the reference-tissue approach. This choice of
functions makes it possible to adequately describe the
shape of AIF with a very limited number of parameters. In
the example below, we show that, unlike the traditional
reference-tissue approach, the double-reference-tissue
method can find the true values for most of the kinetic
parameters through curve fitting, so that the error due to
the disagreement between the literature and actual values
can be minimized. As in the traditional reference-tissue
approach, the literature values for kinetic parameters pro-
vide initial values for their fitting, and can be used to avoid
physiologically unrealistic solutions.

Applications to Two-Compartment Reference Tissues

As an example, we will discuss the case in which both
reference tissues A and B are well approximated by the
two-compartment model. In the two-compartment model,
the rate constant Kep is defined as

Kep � Ktrans/�e, [5]

which represents the rate constant of contrast agent back-
flux from the EES to the blood plasma. Instead of Ktrans and
�e, we can equivalently choose Kep and �e as the kinetic
parameters. When the intravascular contribution to the
measured tracer concentration is ignored, Eqs. [1] and [2]
have simple expressions in the two-compartment model:

Ct�t� � �eKep�
0

t

Cp��� exp� � Kep�t � ��	d�, [6]

Cp�t� �
1
�e
�Ct�t� �

1
Kep

dCt�t�
dt � . [7]

Our eventual goal is to use Eq. [7] to calculate Cp(t) based
on the reference-tissue approach. Ct(t) and dCt(t)/dt can be
estimated from the measured concentration-vs.-time
curve, which always has noise, but we need the best pos-
sible values for �e and Kep. To obtain these values, we
combine data from the two different reference tissues.
With the use of C
t(t) to denote dCt(t)/dt, Eq. [4] becomes

Ct
B�t� �

�e
B

�e
A Kep

B �
0

t�Ct
A�� � l� �

1
Kep

A C
t
A�� � l��

� exp� �Kep
B �t � ��	d� �

�e
B

�e
A Kep

B � 1
Kep

A Ct
A�t � l�

� �1 �
Kep

B

Kep
A ��

0

t

Ct
A�� � l� exp� �Kep

B �t � ��	d��, [8]

where the second equality comes from integration by
parts. Equation [8] is used to fit the kinetic parameters of
the two reference tissues. Finally, the fitted parameters are
plugged into Eq. [7] to estimate the AIF of the reference
tissues.

In the double-reference-tissue method, the number of
kinetic parameters that can be estimated is one less than
the total number. For example, Eq. [8] shows that the
values of �e

A and �e
B cannot be determined; only their ratio

can be estimated. This means that the double-reference
tissue alone cannot estimate the amplitude of the AIF
according to Eq. [7]. To fix the amplitude of the AIF and
obtain all of the kinetic parameters, we can use the litera-
ture value of the ve from one normal reference tissue with
small variability, such as liver (12). The other kinetic pa-
rameter, Ktrans, can then be fitted, since it depends on more
volatile physiological factors (such as blood flow and cap-
illary permeability), and thus varies more dramatically (3).
An alternative way to fix the amplitude of the AIF is to
make one or two measurements of tracer concentration in
blood during the washout phase. To accomplish this ex-
perimentally, one could temporarily change the acquisi-
tion parameters to image the heart chamber, the aorta, or
some other large artery. This measurement of contrast
agent concentration in blood can be interleaved with the
primary protocol, which typically focuses on a tumor or
tumors. The arterial blood would then serve as an addi-
tional reference tissue, but would only be imaged for a few
seconds during the washout phase.

When Kep
A is equal to Kep

B , both will disappear in Eq. [8],
so we cannot estimate them in this degenerate case. Sim-
ilarly, when Kep

A is close to Kep
B , the errors in their estimates

will be large. To avoid large errors caused by near degen-
eracy, two reference tissues with very different rate con-
stants (e.g., spleen and nearby skeletal muscle, or liver and
muscle) should be chosen.

The measured tracer concentration C̃t�t� has noise and
only has values at discrete time points ti, i � 1,. . .,n.
However, to perform curve fitting using Eq. [8], for refer-
ence tissue A we need a smooth estimate of the true con-
centration Ct(t) and its first derivative dCt(t)/dt at any time
point during the scan. For this purpose, we assume the
following statistical model to describe the noise in the
clinical data:

C̃t �t� � Ct�t� � ��t�ε, [9]

where Ct(t) is the true tracer concentration, �(t) is the
standard deviation (SD) of the noise (i.e., the root-mean-
square (RMS) noise level at time t), and ε is an uncorre-
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lated standard Gaussian random variable. With the noise
model (Eq. [9]), the estimation of Ct(t) and its first deriva-
tive dCt(t)/dt can be accomplished with the use of several
nonparametric curve-smoothing methods, such as the lo-
cal polynomial fitting (13) and spline-smoothing (14)
methods. When the two reference tissues include one
high-blood-flow tissue and one low-blood-flow tissue, the
high-blood-flow tissue will be chosen as tissue A, since its
measured concentration-vs.-time curve usually has better
SNR in the early stage of the contrast agent uptake. As a
result, the errors in the estimates of Ct

A�t� and dCt
A�t�/dt are

smaller. For similar reasons, the use of the high-blood-flow
tissue (tissue A) is also recommended for reconstructing
the AIF using Eq. [7].

When deriving the AIF, the tracer concentration-vs.-
time curve from an ROI in the reference tissues, rather than
in a single pixel, should be used in order to increase the
SNR of the data. The criterion for choosing the ROI is that
pixels within the ROI should have very homogenous ki-
netic properties, which is not difficult to achieve in a
normal tissue. After the AIF is determined, it can be used
to estimate the kinetic parameters in a tissue of interest—
either in an ROI or on a pixel-by-pixel basis.

Simulations

Goals

In real clinical data sets, the assumption that the two
reference tissues have AIFs of the same shape may be
invalid. For example, the AIFs in the spleen and the
nearby spine muscle are very likely not the same, because
they undergo different types of dispersion as they travel
from the aorta to different capillary beds. Real clinical data
also have noise. In this section, we use Monte Carlo sim-
ulations (15) to examine the random and systematic errors
caused by these two factors. In the following simulations,
a two-compartment model for both reference tissues is
assumed.

Preparation of the Simulated AIFs

In the simulations, we prepared the AIFs in the two refer-
ence tissues by mimicking the dispersion of the AIF in a
major artery as it travels to the capillary beds of the refer-
ence tissues. The AIF in a reference tissue is mathemati-
cally expressed as a convolution:

Cp�t� � Cp
Aorta�t� � h�t�, [10]

where we use Cp
Aorta�t� to denote the shape of the AIF in the

aorta, and h(t) is called the transport function or indicator
dilution curve (8). Many mathematical expressions, such
as the Gamma-variate function (16,17), the log normal
function (18), and the lagged normal density curve (19),
have been suggested theoretically or empirically to de-
scribe the experimentally measured transport function.

We chose a Gamma-variate function as the transport
function in our simulation for simplicity of calculation:

h�t� �
1

�����t � to�
�1e��t�to�/�, [11]

where to is the bolus arrival time, and � denotes the com-
plete Gamma function. Since many studies have found
that transport functions have fairly similar shapes, except
for a different amount of spread (20), we assume that
different tissues have the same  equal to 4, but different
scales � and bolus arrival time. The assumed transport
function h(t) with  � 4 resembles the transport functions
seen in many experiments (see Fig. 1 insert for an exam-
ple) (17–20). In our simulations we also assume the fol-
lowing Cp

Aorta�t� (shown in Fig. 1):

Cp
Aorta�t� � 3.99e�t/0.144 � 4.78e�t/0.0111

� 240�e�t/0.125 � e�t/0.1� � 4��1 � e�5�t�0.5��I�t � 0.5�

� �1 � e�5�t�0.75��I�t � 0.75�	, [12]

where I(t) represents the unit step function, equal to 0 for
t � 0 and 1 for t � 0. Once again, the simple expression in
Eq. [12] produces a shape that resembles the AIF measured
in a major artery following a bolus injection of contrast
agents (7,21,22). The first two terms in Eq. [12] comprise
exactly the biexponential function in Ref. 2. We add two
more terms to describe the first and second passes ob-
served in experiments so that the simulated data better
resemble clinical data. Given the choices of h(t) and
Cp

Aorta(t) above, we use Eq. [10] to calculate Cp(t) in the
reference tissues. Figure 1 shows that the shape of Cp(t) is
highly distinct for different values of �. With larger values
of �, the dispersion is larger, and the first-pass peak is
wider and lower. Thus, when we select different values of
� for the two reference tissues (�A � �B), their AIFs have
different shapes. In clinical data, the bolus arrival time to
depends on the contrast agent injection time, but often
differs in different tissues. One can simulate the effect of to
by simply shifting the AIF in the reference tissue. In our
simulations, the bolus arrival time of tissue A, to

A, is set to

FIG. 1. The effect of dispersion on the shape of simulated AIFs in
the reference tissues. The transport function h(t) used in the simu-
lations is a 4th-order Gamma-variate function with scale �. Insert:
The shape of h(t) when � � 0.05 [min] and to � 0.0 [min]. Solid line:
The shape of the AIF in the aorta used in the simulations. Dotted line
and dashed lines show the simulated AIFs in the reference tissues
when � � 0.02 [min] and � � 0.05 [min], respectively. The larger the
�, the larger is the dispersion, and the wider and lower is the
first-pass peak.
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the clinically reasonable value t � 0.7 min, and the bolus
arrival time in tissue B is to

B � to
A � l, with –0.28 � l �

0.28 [min].

Kinetic Parameters

In the clinical application of the double-reference-tissue
method, we typically choose one high-blood-flow tissue
(e.g., spleen or liver) as reference tissue A, and one low-
blood-flow tissue (e.g., skeletal muscle) as reference tissue
B. Accordingly, in our simulations we select the kinetic
parameters of the two tissues as (Kep

A � 2.5 [min–1], �e
A

� 0.28) and (Kep
B � 0.5 [min–1], �e

B � 0.14), which are
similar to the kinetic parameters of spleen and muscle for
Gd-DTPA, respectively (23,24).

Simulation Procedures

In the first step of the simulations, given the AIF and
kinetic parameters, we use Eq. [6] to calculate the “true”
concentration-vs.-time curves Ct

A�t� and Ct
B�t� (the word

“true” is in quotation marks because it refers to simula-
tions). In step 2, random Gaussian noise is added to pro-
duce simulated curves C̃t

A�t� and C̃t
B�t� according to the

noise model in Eq. [9], assuming that the noise level �(t) is
constant. The simulated concentration-vs.-time curves
have 400 equally spaced time points during a time period
of 7 min. The third step is to estimate the kinetic param-
eters by a nonlinear least-square fitting of C̃t

B�t� based on
Eq. [8]. First, a local polynomial regression is used to
smooth C̃t

A�t� to obtain the estimates of Ct
A�t� and dCt

A�t�/dt,
and then the four parameters Kep

A , Kep
B , �e

B/�e
A, and l are fitted

by means of the Levenberg-Marquardt algorithm (25). We
use a 4th-order local polynomial regression to optimize the
estimation of dCt

A�t�/dt, and a variable bandwidth selection
scheme to capture the complicated shapes of the curves
(13). All of the numerical integrations needed to fit C̃t

B�t�
are performed according to Simpson’s rule (25). For each
set of simulation parameters, steps 2 and 3 are repeated
1000 times using the same noise level. With such a large
number of repetitions, the 95% confidence interval (C.I.) of
each fitted parameter can be simply constructed by the
2.5% and 97.5% quintiles of the 1000 fitted values. Two
sets of noise levels are used in our simulations: (�A�t�
� 0.10, �B�t� � 0.05) and (�A�t� � 0.05, �B�t� � 0.025).
The corresponding SNRs for concentration are about 20
and 40, respectively, at t � 7.0 min. In terms of time
resolution and SNR, the simulated data are comparable to
DCE-MRI clinical data from a typical ROI scanned with

TE � 1.7 ms, TR � 8 ms, and flip angle � 60° at 1.5 Tesla
(26).

RESULTS

First, we set �A � �B to determine whether the double-
reference-tissue method works in principle when the AIFs
of the two reference tissues have the same shape. The
various AIFs shown in Fig. 1 were used in our simulation.
Table 1 summarizes the statistics of the four fitted param-
eters with several different sets of simulation parameters.
It shows that the means of the fitted parameters are always
very close to the “true” values (i.e., the values selected for
the simulations). Student’s t-tests confirmed that the esti-
mates were unbiased (data not shown). The 95% C.I. has a
small half-width. For example, at the noise level (�A�t�
� 0.10, �B�t� � 0.05), the half-width of the 95% C.I. of the
fitted �Kep

A ��1 is approximately 15% of its “true” value of
0.4. Instead of the rate constant Kep

A itself, we tabulated it as
inverse because the resulting error in the estimated AIF is
proportional to the error in the fitted �Kep

A ��1 according to
Eq. [7]. When the noise level is decreased by half, the 95%
C.I. width reduces by approximately half as well. In Table
1 we report only the case of l � 0.14 [min]. The results are
similar for other values of l.

To illustrate the performance of the double-reference-
tissue method, we chose one data set out of the total of
1000 simulated ones created at �A � �B � 0.02 [min], noise
level ��A�t� � 0.10, �B�t� � 0.05), and l � 0.14 [min]. We
used the sum of squared errors (SSE) to measure the per-
formance of the fit. SSE is defined as

SSE � �
i�1

n

�Ĉt
B�ti� � Ct

B�ti�	
2, [13]

where Ĉt
B�ti� is the concentration in tissue B estimated by

the double-reference-tissue method. Out of the 1000 sim-
ulated data sets used, we report on the one with median
SSE, and thus median performance of fit (illustrated in Fig.
2). Figure 2d shows the histogram of the total of 1000 fitted
�Kep

A ��1 determined from the 1000 simulated data sets, to-
gether with the fitted �Kep

A ��1 of the data set with median
SSE. With a value equal to 0.381 [min], this fitted �Kep

A ��1 is
the 26% quantile; it is closer to the “true” value (0.4) than
52% of the 1000 fitted �Kep

A ��1. Thus, the current example
with median SSE shows an approximately median perfor-
mance in terms of the difference between the fitted �Kep

A ��1

Table 1
The Means and Confidence Intervals (C. I.) of the Fitted Parameters When �A � �B With Several Different Sets of Simulation
Parameters*

�A � �B

(min)
�A �B (Kep

A )�1 (min)
Mean (95% C. I.)

Kep
B (min�1)

Mean (95% C. I.)
�e

B/�e
A

Mean (95% C. I.)
l (min)

Mean (95% C. I.)

0.02 0.10 0.050 0.401 (0.346, 0.459) 0.500 (0.469, 0.530) 0.5001 (0.4924, 0.5090) 0.141 (0.117, 0.162)
0.02 0.05 0.025 0.400 (0.374, 0.428) 0.500 (0.485, 0.515) 0.5000 (0.4961, 0.5042) 0.140 (0.129, 0.152)
0.05 0.10 0.050 0.400 (0.341, 0.460) 0.500 (0.468, 0.532) 0.5001 (0.4918, 0.5087) 0.140 (0.113, 0.167)
0.05 0.05 0.025 0.401 (0.369, 0.430) 0.500 (0.485, 0.515) 0.5001 (0.4958, 0.5042) 0.141 (0.126, 0.154)

*The “true” values of the parameters, i.e., the values selected for the simulations are: (Kep
A )�1 � 0.4 (min), Kep

B � 0.5 (min�1), �e
B/�e

A � 0.5,
and l � 0.14 (min).
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and the “true” value. Figure 2a demonstrates the perfor-
mance of local polynomial regression in smoothing the
noisy concentration-vs.-time curve of tissue A, showing
that the smoothed curve is a close match to the “true”
curve. Figure 2b shows that we can achieve an excellent fit
of the concentration-vs.-time curve in tissue B when the
AIFs of the two tissues are the same. For the reconstruction
of the AIF, we assume that the literature value of �e

A is
equal to the “true” value (that is, the value of 0.28 selected
for the simulations). Figure 2c shows that the recon-
structed AIF in tissue A closely resembles the “true” one,
and even reproduces the second pass of the bolus cor-
rectly. Compared to the “true” AIF in tissue A, the first-
pass part of this estimated AIF is somewhat distorted, with
a slightly wider but lower peak. Part of the distortion is
caused by bias in the smoothing of C̃t

A�t�. With higher time
resolution and SNR, the overlap between the estimated
AIF and the true one would improve.

When the AIFs of the two reference tissues have differ-
ent shapes due to the effects of different dispersions, the
simulations show that the fitted parameters are biased.
Figure 3 shows that when �A � �B, and hence the transport

functions of the two reference tissues have different
spread, the mean of the fitted �Kep

A ��1 is not equal to its
“true” value. Figure 3 shows that as the difference between
�A and �B increases, the bias in the mean of fitted �Kep

A ��1

increases, and when the difference is 0.03 min, the bias is
only about 10%. At the noise level ��A�t� � 0.10, �B�t�
� 0.05) that corresponds to an approximate SNR of 20,
the half-width of the 95% C.I. of fitted �Kep

A ��1 remains
about 15% of the “true” value at different combinations of
�A and �B; and it is halved when the noise level is reduced
by half.

Given the effect of �A and �B in simulations, it is useful
to estimate their orders to determine the degree of bias in
real clinical data. In clinical applications of the double-
reference-tissue method, we would choose two reference
tissues in close anatomical proximity, such that the mean
transit time (MTT) of the AIF from a common major artery
to the reference tissues is several seconds or, at most, a few
tens of seconds. In other words, the MTT is approximately
0.1–0.6 min. Many studies have shown that the SD of the
transport function is about 0.2 times the MTT (19,27), i.e.,
the longer the transit time, the greater the dispersion. The

FIG. 2. Performance of the double-refer-
ence-tissue method illustrated by the simu-
lated data set with median SSE out of the
total of 1000 simulated ones created at �A �
�B � 0.02 [min], noise level (�A (t) � 0.10, �B

(t) � 0.05), and l � 0.14 [min]. a: The con-
centration-vs.-time curve in tissue A
smoothed from the noisy simulated curve
by local polynomial regression (dashed line)
is a very good fit for the “true” curve used in
the simulation (solid line). b: The concentra-
tion-vs.-time curve in tissue B fitted by the
double-reference-tissue method (dashed
line) is in good agreement with the “true”
curve (solid line). c: For this data set with
median performance, the AIF in tissue A
estimated by the double-reference-tissue
method (dashed line) is very close to the
“true” AIF. d: The histogram of the total of
1000 fitted (Kep

A )�1 estimated from the 1000
simulated data sets, the dashed line shows
the fitted (Kep

A )�1 of the current data set,
which is the 26% quantile. The “true” value
of (Kep

A )�1 is 0.40.

FIG. 3. Statistics of the fitted (Kep
A )�1 with

different combinations of �A and �B. We
selected l � 0.0 [min] in the simulations
shown here. Solid lines and dashed lines are
respectively the mean and 95% C.I. of the
fitted (Kep

A )�1 at the noise level (�A(t) � 0.10,
�B(t) � 0.05). Squares and dotted lines are
respectively the mean and 95% C.I. of the
fitted (Kep

A )�1 at the noise level (�A(t) � 0.05,
�B(t) � 0.025). The dot dashed lines show
the “true” value of (Kep

A )�1, which is 0.40
[min]. The mean of the fitted (Kep

A )�1 is not
equal to its “true” value when �A � �B.
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SD of the transport function used in our simulation is
equal to 2�, and therefore 2� � 0.2 MTT. This leads to an
estimation of �A and �B between 0.01 and 0.06 min, ac-
cording to the order of MTT mentioned above. This range
of �A and �B is what we used in our simulations (Fig. 3).
Given the range of �A and �B expected in clinical data, the
difference between �A and �B is unlikely to exceed
0.03 min. This follows once again from the 2� � 0.2 MTT
relationship, which reveals that a 0.03-min difference be-
tween �A and �B is equivalent to a difference of about
0.3 min between the MTT of the two reference tissues. A
0.3-min (nearly 20 s) difference in MTT is unlikely when
the two reference tissues are chosen to be in close anatom-
ical proximity. Importantly, and as described in the previ-
ous paragraph, a 0.03-min difference between �A and �B

will result in about 10% systematic errors. Thus, our sim-
ulations suggest that the systematic errors due to disper-
sion effects are very likely �10% in clinical applications
of the double-reference-tissue method.

DISCUSSION AND CONCLUSIONS

In this work we have presented a novel method to estimate
the AIF from the contrast agent concentration-time curves
of two reference tissues measured by DCE-MRI. Under the
assumption that the AIFs of the two reference tissues have
the same shape, the double-reference-tissue method at first
establishes a connection between the two concentration-
vs.-time curves so as to fit the kinetic parameters of the two
reference tissues. Then the AIF is estimated with the fitted
kinetic parameters by means of the reference-tissue ap-
proach. We used Monte Carlo simulations to evaluate the
performance of the method, which showed that it gives an
excellent estimate of the AIF for simulated data, with an
SNR comparable to that of real clinical data. The simula-
tions also estimated the magnitude of errors due to noise,
as well as the discrepancy between the AIFs of the two
tissues caused by their different dispersions. These simu-
lations suggest that the random and systematic errors are
small, and that the double-reference-tissue method will be
reliable in clinical applications.

The simulations also show that differences in �A and �B

will lead to bias in the estimates of kinetic parameters. As
a further refinement of the double-reference-tissue
method, one could estimate and even possibly reduce this
bias by using experimental data to estimate the relative
values of �A and �B. This could be done using the rela-
tionship between bolus arrival time and MTT, as dis-
cussed above. In addition, because �A and �B indicate the
effect of dispersion in the two reference tissues, their am-
plitude is reflected by the width of the first-pass bolus. In
truly high-time-resolution and high-SNR data, an excellent
estimate of dCt(t)/dt can be obtained for each reference
tissue. This can then be used to find the beginning and end
of the first-pass bolus. The resultant width of the first-pass
bolus of the two tissues can then be used to estimate the
order of magnitude of �A and �B. Estimates of the differ-
ence between �A and �B could be used as evidence to
neglect the bias if the differences are small, or as informa-
tion to correct for the bias if the differences are large.

In the application of the double-reference-tissue
method, we use data from a homogenous ROI of the nor-

mal reference tissues to increase the SNR. Sometimes it
may be difficult to choose a continuous ROI whose pixels
all have homogenous kinetic parameters—for example, in
cases in which normal liver and muscle tissue have fatty
infiltrations. In such cases, we use an iterative fitting pro-
cedure to eliminate pixels whose kinetic parameters differ
significantly from those of other pixels. As the first step,
we obtain an estimate of the AIF by using the mean con-
centration-vs.-time curves of all the pixels in the ROI.
Second, we use the obtained AIF to fit the kinetic param-
eters for every pixel in the ROI. The pixels whose fitted
kinetic parameters differ significantly are then eliminated.
Finally, using the mean concentration-vs.-time curves of
the remaining pixels, one can calculate an updated, more
accurate estimate of the AIF. If the second step is repeated
several times, the final remaining pixels in the ROI will be
homogenous, and the final obtained AIF will be more
precise.

In the simulations, we utilized a two-compartment
model to determine kinetic parameters in the reference
tissues. In animal models, the two-compartment model
works well for normal tissues, particularly normal tissues
with high blood flow (11). The two-compartment model
also has relatively few adjustable parameters, and this is
preferable for data with modest SNR. Although more com-
plicated models (e.g., three-compartment models) may
provide better fits to experimental data, the introduction of
additional parameters will lead to greater errors in the
parameter estimates, and a greater risk for degeneracy be-
tween kinetic parameters in the fitting algorithm. Al-
though the double-reference-tissue method is applicable to
any kinetic model, including models that take into account
the intravascular contribution to the measured concentra-
tion, it remains preferable in practice to use the two-
compartment model for normal tissues when it can pro-
vide an adequate fit to the data.

It is also preferable to use tissue with high blood flow
and capillary permeability (such as liver or spleen) as one
of the reference tissues, for three reasons: First, a two-
compartment model is likely to be a good approximation
for highly perfused tissues, so that the AIF in can be
described by the simple expression in Eq. [7]. Second,
since the concentration-vs.-time curve for rapidly perfused
tissues has a higher SNR in the initial steep uptake period,
the comparative errors in the nonparametric estimates of
Ct

A(t) and dCt
A(t)/dt are smaller. Third, because contrast

media exchanges rapidly between blood and tissue, the
contrast media concentration in the blood plasma is nearly
in equilibrium with the concentration in the EES after the
first few passes of the contrast bolus. This allows accurate
measurement of the AIF during washout. It should be
noted that the kidney’s role in filtering and excreting low-
molecular-weight contrast agents makes the use of this
organ as a reference tissue problematic despite its high
blood flow and capillary permeability.

The present demonstration of the double-reference-tis-
sue method is based entirely on simulations. The simula-
tions did not account for blood plasma’s contribution to
the measured contrast media concentration, or other, more
complicated underlying pathophysiology (such as the liv-
er’s unique circulation system). The transport function of
liver may be very different from the transport function
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used in our simulations. In the liver, the contrast agent
reaches the organ through the hepatic artery, which is a
branch of the aorta, as well the hepatic portal vein, which
transports venous blood from the splanchnic organs. Thus
the current simulations may not correctly estimate the bias
when liver is used as reference tissue A. Further clinical
investigation should be considered to determine whether
the liver is a good reference tissue for the double-refer-
ence-tissue method.

Given the promising results suggested by the simula-
tions here, the next step will be to test the performance of
the method in practice. The parameters obtained with the
present method must be compared with the AIF and/or
kinetic parameters estimated with other methods and/or
with contrast media concentration measured in blood sam-
ples. If such studies confirm that the double-reference-
tissue method is accurate, it could then be used to derive
the AIF for more complicated tissues, such as tumor tissue.
This would allow more accurate estimations of the kinetic
parameters, which in turn have been proposed as useful
pharmacodynamic and predictive markers for vascular-
targeted therapy.

REFERENCES

1. Kety SS. Regional cerebral blood flow: estimation by means of nonme-
tabolized diffusible tracers—an overview. Semin Nucl Med 1985;15:
324–328.

2. Tofts PS, Kermode AG. Measurement of the blood-brain barrier perme-
ability and leakage space using dynamic MR imaging. I. Fundamental
concepts. Magn Reson Med 1991;17:357–367.

3. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV,
Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff
RM. Estimating kinetic parameters from dynamic contrast-enhanced
T(1)-weighted MRI of a diffusable tracer: standardized quantities and
symbols. J Magn Reson Imaging 1999;10:223–232.

4. Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in
oncology with an emphasis on quantification, validation and human
studies. Clin Radiol 2001;56:607–620.

5. Parker GJ, Tanner SF, Leach MO. Pitfalls in the measurement of tissue
permeability over short-scales using a low temporal resolution blood
input function. In: Proceedings of the 4th Annual Meeting of ISMRM,
New York, 1996. p 1582.

6. Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G. Multicom-
partment analysis of gadolinium chelate kinetics: blood–tissue ex-
change in mammary tumors as monitored by dynamic MR imaging. J
Magn Reson Imaging 1999;10:233–241.

7. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Hen-
riksen O. Measurement of the arterial concentration of Gd-DTPA using
MRI: a step toward quantitative perfusion imaging. Magn Reson Med
1996;36:225–231.

8. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in
dynamic susceptibility contrast MRI: simulations using singular value
decomposition. Magn Reson Med 2000;44:466–473.

9. Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ. Pharmacokinetic
mapping of the breast: a new method for dynamic MR mammography.
Magn Reson Med 1995;33:506–514.

10. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue
homogeneity model for water exchange in the brain: II. Experimental
validation. J Cereb Blood Flow Metab 1998;18:1378–1385.

11. Kovar DA, Lewis M, Karczmar GS. A new method for imaging perfu-
sion and contrast extraction fraction: input functions derived from
reference tissues. J Magn Reson Imaging 1998;8:1126–1134.

12. Rippe C, Rippe B, Erlanson-Albertsson C. Capillary diffusion capacity
and tissue distribution of pancreatic procolipase in rat. Am J Physiol
1998;275(5 Pt 1):G1179–G1184.

13. Fan J, Gijbels I. Local polynomial modelling and its applications. New
York: Chapman & Hall; 1996.

14. Eubank RL. Nonparametric regression and spline smoothing. New
York: Marcel Dekker, Inc.; 1999.

15. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR.
High resolution measurement of cerebral blood flow using intravascu-
lar tracer bolus passages. Part I: Mathematical approach and statistical
analysis. Magn Reson Med 1996;36:715–725.

16. Evans RL. Two comments on the estimation of blood flow and central
volume from dye-dilution curves. J Appl Physiol 1959;14:457.

17. Thompson Jr HK, Starmer CF, Whalen RE, McIntosh HD. Indicator
transit time considered as a Gamma variate. Circ Res 1964;14:502–515.

18. Stow RW, Hetzel PS. An empirical formula for indicator-dilution
curves as obtained in human beings. J Appl Physiol 1954;7:161–167.

19. Bassingthwaighte JB, Ackerman FH, Wood EH. Applications of the
lagged normal density curve as a model for arterial dilution curves. Circ
Res 1966;18:398–415.

20. Bassingthwaighte JB. Physiology and theory of tracer washout tech-
niques for the estimation of myocardial blood flow: flow estimation
from tracer washout. Prog Cardiovasc Dis 1977;20:165–189.

21. Andersen C, Taagehoj JF, Muhler A, Rehling M. Approximation of
arterial input curve data in MRI estimation of cerebral blood-tumor-
barrier leakage: comparison between Gd-DTPA and 99mTc-DTPA in-
put curves. Magn Reson Imaging 1996;14:235–241.

22. Li KL, Zhu XP, Waterton J, Jackson A. Improved 3D quantitative map-
ping of blood volume and endothelial permeability in brain tumors. J
Magn Reson Imaging 2000;12:347–357.

23. Padhani AR, Hayes C, Landau S, Leach MO. Reproducibility of quan-
titative dynamic MRI of normal human tissues. NMR Biomed 2002;15:
143–153.

24. van Laarhoven HW, Rijpkema M, Punt CJ, Ruers TJ, Hendriks JC,
Barentsz JO, Heerschap A. Method for quantitation of dynamic MRI
contrast agent uptake in colorectal liver metastases. J Magn Reson
Imaging 2003;18:315–320.

25. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical
recipes in C. New York: Cambridge University Press; 1992.

26. Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, Kindler H,
Vokes E, MacEneany P, Mitchell MT, Stadler WM. Semi-quantitative
analysis of dynamic contrast enhanced MRI in cancer patients: vari-
ability and changes in tumor tissue over time. J Magn Reson Imaging
20:122–128.

27. King RB, Deussen A, Raymond GM, Bassingthwaighte JB. A vascular
transport operator. Am J Physiol 1993;265(6 Pt 2):H2196–H2208.

Estimating Arterial Input Function 1117


