
Figure 1. Heterogeneous distribution of trastuzumab. 
Trastuzumab was administered to Her2+ xenograft-bearing mice. Multiplex immunohistochemistry shows vasculature (CD31, dark blue), perfusion dye (carboycanine, cyan) and trastuzumab (red) 
after a 26h exposure.  By 26h most vessels have at least some trastuzumab binding of perivascular cells, but independent of vascular density (high, left; low, right) there remain some vessels with less 
trastuzumab. This intra-vessel heterogeneity in trastuzumab distribution results in some tissue remaining unexposed to systemically administered trastuzumab. Scale bars 200µm.  
[Baker et al., 2008. Clinical Cancer Research 14(7); p2171].



Figure 2. Hyperbranched polyglycerol (HPG) as multi-modal imaging agent.

Images of (A) HPG fluorescence in a tumour cryosection and (B) HPG concentration from calibrated 
changes in R1 relaxation rate of the same slice and orientation. Corresponding T1-weighted RARE MR 
images are shown (C) prior to and (D) 40min post-injection of HPG.. [Saatchi, et al., 2012. Bioconugate 
Chemistry 372(23); p372].
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Figure 10. (a) Image of HPGDF-Gd fluorescence of a tumor cryosection. (b) HPGDF-Gd concentration from calibrated change in R1 relaxation
rate (range from 0 to 1 s−1) of the same slice and orientation in vivo. Corresponding T1-weighted RARE MR images are shown (c) prior to and (d)
40 min post-injection of 600 mg/kg of HPGDF-Gd. Scale bar indicates 1 mm.
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Figure 3. Correlating MR imaging with histological analysis. 

Excellent correlations between MR and histological images are obtained using 
implanted fiducial markers constructed of polyethylene tubing filled with saline and 
paraffin. This marker, detectable using both modalities, enables re-imaging of the same 
planes in different modalities and on multiple days. Markers (left) shown in MR images 
(middle) and in histological image of vascular staining (right).



Figure 4. Experiment workflow. 

A typical experiment workflow involves MR imaging of Her2+ xenografts (A) followed by 
histological processing and multiplexed immunostaining (B) such that images from both 
modalities may be overlayed for contextual analysis (C). 



Figure 5. Correlating MRI and histological images for quantitative analysis.
MRI-derived biomarkers such as IAUC are displayed as parameter maps (top) and are compared to 
histological images of perfusion that are downsampled or at full resolution (middle), enabling 
comparison of detailed microenvironmental features at high resolution (bottom) to those of MRI.  
These comparisons are verified quantitatively in a correlative chart. [Bains, Baker et al., 2009. Int J 
Rad Oncol Phys 74(3); p957].


